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Introduction

Hydrodynamic turbulence (incompressible neutral �ow) as a �rst step to
understand astro- and geo-physical systems (atmosphere, ocean surface,
rivers, galaxies, protostellar disks wherever electromagnetic forces are
subdominant...)

Turbulence can be characterized by:

• a hierarchy of structures over a large range of spatial scales

L0︸︷︷︸
scale of energy injection

range of scales (inertial range)−−−−−−−−−−−−−−−−−−−→ `ν︸︷︷︸
scale of energy dissipation

• large & apparently random �uctuations of velocity and pressure

• strong mixing of the �uid

• instability characteristic; a weak initial noise can be signi�cantly
ampli�ed (chaotic system with large number of degrees of freedom)
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• turbulence appears whenever the source of energy exciting �uid
motions is enough intense compared to the viscous �uid resistance

• dimensionless control parameter: Reynolds number Re = UL0/ν with
U and L0 the characteristic velocity and scale, ν is the kinematic
viscosity

• critical value of Re at which initial instability of a steady (laminar)
state: Rec

• high Reynolds number Re � Rec fully developped turbulent state with
some statistical properties: homogeneity, isotropy, full isotropy (away
from constraints as motion of solid boundaries, velocity shear,
boundary layer...)

• values of kinematic viscosity for some �uids [cm2/s]
mercury 0.0012 water 0.011 air 0.015
alcohol 0.022 olive oil 1.08 glycerine 18.5

• estimation of some Reynolds numbers :
atmosphere; ν ∼ 0.015cm2/s, U ∼ 10m/s, L ∼ 15m → Re ∼ 107

water pipe; ν ∼ 0.01cm2/s, U ∼ 0.1m/s, D ∼ 5cm → Re ∼ 5000
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Statistical description

2 signals recorded each 4"; quite
similar but unpredictable in their
detailed behaviors from (a) to (b)

pdf of recorded signals (few minutes
later); essentially identical
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• if the energy source is stable, and ignoring transient e�ects, the �ow
has a "stationary random" character: although its detailed properties
are unpredictable, its statistical properties are reproductible
(statistically steady)

• velocity components and pressure, are considered as random functions
of space & time: at a given location (x, t), u, p take random values

• signals may be decomposed into mean (i.e. time average) and
�uctuating components

u(x, t) = U(x) + u′(x, t) with U(x) = 〈u(x, t)〉

determine all statistical properties of the fow is still a distant target ...

• preferable (theoretical point of view) to de�ne "ensemble average" as
an average over a very large number N of identical experiments of a
given �ow (N realisations): U(x, t) = 〈u(x, t)〉N
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• result of ergodic theory: if u(x, t) is a stationary random function of
time (all ensemble quantities are time-independent) then (under
certain mild subsidary conditions) ensemble average and time average
yield the same result. Idem, if u(x, t) is a stationary random function
of space, ensemble average and space average give the same result

• Homogeneous turbulence (1): statistical stationarity with respect to
one or more coordinates, i.e. all satistical properties are invariant
under translations of one or more coordinates.
In practice, for ex., 〈ui (x, t)uj(x + r, t)〉 = Rij(r, t), correlation tensor,
is independent of x and only depends on r

• Isotropic turbulence (2): statistical stationarity with respect to all
directions, i.e. all satistical properties are invariant under rotations.
For ex., 〈ui (x, t)uj(x + r, t)〉 = Rij(r , t) with r = |r| ((1)+(2))

• Re�exionally symmetric turbulence (3): statistical stationarity under
change from right-handed to left-handed frame of reference, i.e. all
satistical properties are invariant under parity transformations.
For ex., Rij(r , t) has no antisymmetric part ((1)+(2)+(3) or "full

isotropy")
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Spectral description of homogeneous turbulence

Suppose that u(x, t) is a �eld of homogeneous turbulence with 〈u〉 = 0
(mean velocity suppressed by Galilean transformation) and consider its
instantaneous structure (i.e. omit explicit time dependence from now on):

• Fourier transform is formally (as a generalised function) de�ned by
û(k) = 1/(2π)3

∫∫∫
u(x)e−ik·xdx = û∗(−k) where û(k) is Fourier

amplitude, k = (kx , ky , kz) wave-vector and x = (x , y , z) space-point

• the inverse formula is u(x) =
∫∫∫

û(k)eik·xdk
• incompressibility ∇ · u(x) = 0 ∀x =⇒ k · û(k) = 0 ∀k −→ Fourier
decomposition is a decomposition into transverse waves with k

• Second order correlation tensor and spectrum tensor of the velocity
(Cramer's theorem for a stationary random process)

Rij(x) = 〈ui (x)uj(x̃)〉 =

∫
Φij(k)eik ·r dk with x̃ = x + r

Φij(k) = 1/(2π)3
∫

Rij(r)e−ik ·r dr where

∫
· dx ≡

∫∫∫
· dx
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Φij(k) is a complex tensor such as
∫
|Φij(k)|dk <∞ and Φ = XiX

∗
j Φij(k)

quadratic form > 0 (∀ X ∈ C)
• Homogeneity −→ Rij(r) = Rji (−r) and Φ∗ij(k) = Φij(−k) = Φji (k)

• Incompressibility −→ ∂Rij(r)/∂rj = ∂Rij(r)/∂ri = 0 and
kjΦij(k) = kiΦij(k)

• Φij(k) = Φ
(s)
ij (k)︸ ︷︷ ︸

symmetric real

+ Φas
ij (k)︸ ︷︷ ︸

antisymmetric pure imaginary

• Remark :

〈û∗i (k)ûj(k̃)〉 = 1/(2π)6〈
∫∫

ui (x)uj(x̃)eik·xe−i k̃·x̃dxd x̃〉

= 1/(2π)6
∫∫
〈ui (x)uj(x̃)〉eik·x−i k̃·x̃dxd x̃

= 1/(2π)6
∫∫

Rij(r)e
−i k̃·r

e
i(k−k̃)·xdxdr

= 1/(2π)3
∫

Rij(r)e
−i k̃·r 1/(2π)3

∫
e
i(k−k̃)·xdxdr = Φij(k̃)δ(k− k̃)
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∗
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Energy spectrum function

E = 1/2〈u(x)2〉 = 1/2

∫∫
〈û∗i (k)ûi (k̃)〉eik·x−i k̃·x̃dkd k̃

= 1/2

∫∫
Φii (k̃)eik·x−i k̃·x̃δ(k− k̃)dkd k̃ = 1/2

∫
Φii (k)dk

Spectral density of energy is E(k) ≡ 1/2Φii (k). If isotropy is assumed, no
dependence on direction of r or k, angle averaging on sphere S(k) of radius
k = |k | in k-space gives

E (k) = 4πk2E(k) = 1/2

∫
S(k)

Φii (k)dS−→
∫ ∞
0

E (k)dk = 1/2〈u(x)2〉

E(k)dk may be interpreted as the contribution to turbulent energy from a spherical

annulus (k, k + dk) of wave-numbers k = |k |
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• Enstrophy spectrum function
with vorticity ω = ∇× u =

∫
ik× û(k)eik·xdx

Ω = 1/2〈ω2(x)〉 = 1/2

∫
Ωii (k)dk = 1/2

∫
k2Φii (k)dk

For isotropic turbulence 1/2〈ω2(x)〉 =
∫∞
0 Ω(k)dk =

∫∞
0 k2E (k)dk

• Helicity spectrum function

Hc = 〈u(x) · ω(x)〉 = iεijm

∫
kjΦim(k)dk =

∫
H(k)dk

Note that helicity is a pseudo-scalar. For isotropic turbulence
H(k) = 4πk2H(k) −→ 〈u · ω〉 =

∫∞
0 H(k)dk

• Form of the spectrum tensor Φij(k) for isotropic turbulence

Φij(k) =
E (k)

4πk2

[
δij −

kikj

k2

]
+ i

H(k)

8πk4
εijmkm

If, moreover, turbulence is re�exionally symmetric (or fully isotropic),

H(k) = 0 and Φij(k) = E(k)
4πk2

[
δij −

kikj
k2

]
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Phenomenological description (K41)

Consider an idealised situation: a statistically stationary �ow forced by a
volume force F which is stationary, random,homogeneous and fully
isotropic, on characteristic scale `0 ∼ 1/k0. The velocity obeys the usual
Navier-Stokes equation (with density ρ = cst, and ν kinematic viscosity)

∂u/∂t + (u · ∇)u = −1

ρ
∇p + F + ν∆u

∇ · u = 0

B.C .

What happens to the injected energy ?

〈1
2
∂tu

2 + u · (u · ∇)u〉 = 〈1
ρ
u · ∇p + F · u + νu ·∆u〉

∂t
1

2
〈u2〉 = 〈F · u〉 − ν〈ω2〉

with 〈·〉 ensemble, or time or space average, and using the following results implied by

icompressibility and homogeneity
H. Politano (UNS) HD & MHD Turbulence
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〈u · (u · ∇)u〉 = 〈(u · ∇)
1

2
u
2/〉 = ∇ · 〈1

2
uu

2〉 = 0

〈u · ∇p/ρ〉 = ∇ · 〈u/ρ〉 = 0

〈u ·∆u〉 = 〈∇ · (ω × u)− ω2〉 = −〈ω2〉

• For a turbulent �ow statistically stationary with respect to time, i.e.
1
2〈u

2〉 = cst,

〈F · u〉︸ ︷︷ ︸
energy injection mean rate

= ν〈ω2〉︸ ︷︷ ︸
energy dissipation mean rate

= ε

• also written in terms of the viscous stress tensor [σij ] = [∂jui + ∂iuj ];
ε = ν

2 〈(∂jui + ∂iuj)
2〉, dimensions [ε] = L2T−3

• Energy dissipation cannot arise at scale `0, at that scale, the Reynods
number is very large and dissipation is very small =⇒ physical picture
of the Richardson's energy cascade (1926)
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Scenario of the energy cascade and viscous cut-o�: Richardson's cascade

2 basic assumptions within the inertial range: scale-invariance (space-�lling eddies,

0 < r < 1) & localness of interactions (energy �ux at scales ∼ ` mainly involves scales

of comparable size)
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In this scenario, ε plays a triple role :

• mean rate of injection of energy on scale `0 (also denoted L0 or
"integral scale")

• mean rate of �ux of energy throughout the inertial range `ν � `� `0
(with `ν the dissipative scale, also denoted η or "Kolmogorov scale")

• mean rate of dissipation of energy on scales `� `ν
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Phenomenological tools to describe turbulent �ow properties on scales `
within the inertial range (`ν � `� `0) with typical velocity u`,

• u0 (could be urms) is the velocity associated to the most energetic
eddies of size ∼ `0

• integral Reynolds number: Re ∼ u0`0/ν

• Reynolds number on scale ∼ `: R` ∼ u``/ν

• eddy turnover time (or nonlinear time): t` ∼ `/u`
• viscous di�usion time (attenuation of excitation) on scale ∼ `:
tν ∼ `2/ν

• kinetic energy on scale ∼ `: K` ∼ u2`/2

• energy �ux on scale ∼ `:
ε` ∼ K`/t` ∼ u3`/` ∼ ε ∼ u30/`0 → u` ∼ (ε`)1/3

and → u` ∼ u0(`/`0)1/3
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Characteristic scales of the �ow

• dissipation scale: t` ∼ tν → `ν/u`ν ∼ `2ν → `ν ∼ ν/u`ν
- with u`ν ∼ ε

1/3`
1/3
ν → `ν ∼ (ν3/ε)1/4

- with u`ν ∼ u0(`ν/`0)1/3 → `ν ∼ `0R
−3/4
e → Re ∼ (`0/`ν)4/3

• "Taylor scale": λ ∼ (E/Ω)1/2 (isotropic case)

with E = 〈u2〉/2 ∼ u0
2/2 & Ω = 〈ω2〉/2 = 1

2ε/ν → λ ∼ (Eν/ε)1/2

or λ ∼ `0R
−1/2
e and Rλ ∼ u0λ/ν ∼ R

1/2
e

• integral scale: `0 ∼ u30/ε ∼ E 3/2/ε

• estimation of the number of degrees of freedom: N ∼ `0
3/`3ν ∼ R

9/4
e ,

correct if motions at inertial range are fully disorganized, but coherent
structures, vortex �laments,.. do exist thus the presence of some order
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Energy and Enstrophy spectra for isotropic turbulence

• energy spectrum E (k); E = 1/2〈u(x)2〉 =
∫∞
0 E (k)dk

the k-space is splitted into spherical shells, for ex. k02
p−1 < k < k02

p,
and one can write

E =
∑
p

Kp =
∑
p

E (kp)kp (by dimensional consistency)

shell by shell, it gives

Kp ∼ u2p/2 ∼ (ε/kp)2/3 ∼ E (kp)kp → E (kp) ∼ ε2/3k−5/3p

hence the Kolmogorov (K41) spectrum within the inertial range:

k0 � k � kν E (k) = Cε2/3k−5/3

• enstrophy spectrum Ω(k) in the inertial range

Ω(k) = k2E (k) = Cε2/3k1/3
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• energy spectrum E (k); E = 1/2〈u(x)2〉 =
∫∞
0 E (k)dk

the k-space is splitted into spherical shells, for ex. k02
p−1 < k < k02

p,
and one can write

E =
∑
p

Kp =
∑
p

E (kp)kp (by dimensional consistency)

shell by shell, it gives

Kp ∼ u2p/2 ∼ (ε/kp)2/3 ∼ E (kp)kp → E (kp) ∼ ε2/3k−5/3p
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MHD approximation

• Crucial role of the magnetic �eld in geophysical and astrophysical �uid
dynamics (stellar or solar wind, convective zone of stars, accretion
discs, magnetic �eld generation by dynamo e�ect, ...) leads to explore
properties of MHD, namely the interaction between an electrically
conducting �uid and a magnetic �eld

• MHD is a �uid approximation: does not describe the detailed
processes of plasma physics which require description of individual
motions of particles

• MHD approximation for some plasmas and liquid metals
* quasi-neutral property (∇ · E ' 0, with E the electric �eld)
* �uid approximation: electrical conduction of the medium by electrons alone
* non relastivistic limit (typical velocity U � c)
* collisional plasma/�uid: conductivity is independent of U (time evolution of

the �uid � time between 2 collisions ions/electrons, �uid elements contain many

ions & electons )

* trajectories of electrons are not changed under the magnetic �eld B action
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MHD equations

• Maxwell's equations
Faraday's law ∇× E + ∂B/∂t = 0
Ampère's law ∇× B = µ0[j +�����ε0∂E/∂t]
Coulomb's gauge ∇ · B = 0
where j ≡ current density, µ0 ≡ magnetic permeability of free space, ε0 ≡
permittivity of free space, and displacement current is neglected

• add Ohm's law j = σ(E + u × B)
where σ ≡ electrical conductivity of the medium

• equations combine to yield an evolution equation for the magnetic
�eld or the so-called induction equation

∂B/∂t = ∇× (u × B) + η∆B

where η = (µ0σ)−1 is the magnetic resistivity of the medium

• note that ∇× (u × B) = −(u · ∇)B + (B · ∇)u represents both
advection and stretching of the �eld B (with ∇ · u = 0 = ∇ · B)
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• Incompressible MHD equations

∂u/∂t + (u · ∇)u = −∇p/ρ+ ν∆u + (j × B)/ρ+ F

∂B/∂t + (u · ∇)B = (B · ∇)u + η∆B

∇ · u = 0 = ∇ · B and B.C .

where j × B = (∇× B)× B/µ0 is the Lorentz force and F a body force

(friction, gravity, Coriolis force,..). B can be replaced by the scaled

magnetic �eld b = B/(ρµ0)1/2 = va which has dimension of a

velocity and is called the Alfvén velocity although B is a pseudovector

• dimensionless parameters
* magnetic Reynolds number = induction / di�usion = RM = UL0/η
* magnetic Prandtl numer PM = ν/η = RM/Re, PM � 1
(PM ∼ 10−7 − 10−2, protostellar disk, sun, and liquid sodium experiments

PM ∼ 10−6) or PM � 1 (PM ∼ 1014 − 1019 as in solar wind, protogalaxies,

interstellar medium..)
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• MHD equations in Elsässer variables
The velocity u and magnetic �eld b can be combined into the Elsässer
�elds z± = u ± b, to obtain more symmetric equations

(∂t + z∓ · ∇)z± = ν1∆z± + ν2∆z∓ −∇P∗ + f ±

where ∇ · z± = 0, P∗ = (p/ρ+ b2/2) is the total pressure, and
ν1 = 1

2
(ν + η), ν2 = 1

2
(ν − η)
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Ideal invariants in homogeneous MHD turbulence

• ∂tET = −ν < ω2 > −η < j2 >, for ν = η = 0 → total energy
(kinetic + magnetic) is a conserved quantity

• ∂tHc = ∂t < u · b >= −(ν + η) < ω · j >, for ν = η = 0 → cross
helicity Hc is conserved.
Hc tells the degree of linkage of a thin isolated �ux tube and a thin isolated

vortex tube in same region of space (if Hc = 0 no linkage)

• ∂tHb = ∂t < a · b >= −2η < b · j > (with a ≡ magnetic potential
∇× a = b), for η = 0 → magnetic helicity Hb is conserved.
Hb is a measure of the degree of linkage of 2 thin isolated magnetic �ux
tubes (if Hb = 0 no linkage)

• ∂tE+ = −ν1 < (ω+)2 > −ν2 < ω+ · ω− >
∂tE

− = −ν1 < (ω−)2 > −ν2 < ω− · ω+ >
for ν = η = 0 = ν1 = ν2 → energy of the z+ and the z− �elds are
conserved

• note that: 1) helicities are pseudo-scalars, 2) in an ideal �uid, the
mutual topologies of tubes are conserved
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Alfvén waves

• Linearization of incompressible MHD eqs around a uniform magnetic
�eld b0 with ρ0 = cst, p0 = cst,u0 = 0 (ν and η neglected) leads to :

∂tz
+ − (b0 · ∇)z+ = 0

∂tz
− + (b0 · ∇)z− = 0

Looking for a solution of plane-wave type for perturbations

z± = zk
±
e
i(k ·x−ω̄±t)

gives: ω̄+ = −(b0 · k) & ω̄− = +(b0 · k) with k · z+
k = 0 &

k · z−k = 0 (incompressibility).

• z+ and z− are the so-called Alfvén waves : transverse waves (z±k ⊥k)
with group velocity vg = ±b0 and phase velocity vφ = ±b0k‖/k
(semi-dispersives waves), where k‖ is the component of k ‖ b0.

• oppositely travelling waves: z− travels in the b0-direction while z+ is
backward travelling, with group velocity b0, the so-called Alfvén
velocity denoted va
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* A uniform magnetic �eld b0 (or a local one at scale larger than a given `
in the inertial range, or at large scale) has a signi�cant dynamical e�ect for
energy transfers : z+ and z− blob disturbances (wavepackets) only interact
when they collide −→ weakening of the transfer of energy between scales
(i.e. weak nonlinearity)
* Multiple collisions are needed to pass energy in the blobs to smaller scales
* This is the basic idea of "IK" phenomenology (Iroshnikov 63, Kraichnan

65): interplay between turbulent eddies and Alfvén waves travelling along a
mean �eld −→ crucial di�erence between hydrodynamic and conducting
�uids
* Does Kolmogorov's approach still work ? Does it need to be modi�ed ?
Alfvén waves and correlation between u and b �elds (cross helicity) are
crucial and lead to a lack of universality for inertial MHD spectra
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Phenomenologies

Let's take PM ∼ 1 from now on.
Suppose |b| � |b0|, the IK phenomenology is based on weak nonlinear
interactions and many collisions, say N, between z+ and z− wavepackets
of similar size `, are needed to pass energy to smaller scales. For simplicity,
ignore anisotropy (`‖ ∼ `⊥ ∼ `) and suppose zero cross helicity HC ∼ 0

(z+

`
∼ z−

`
∼ z`). Disturbances are sheared by an amount

δz` ∼ (z`z`/`)(`/b0) −→ δz`/z` ∼ z`/b0

• ta ∼ `/b0 ≡ `/va is the interaction time for one collision (Alfvén time)
at scale `, i.e. characteristic time for propagation over a distance `

• N expected number of accumulated random collisions∑
N δz` ∼

√
Nδz` ∼ z` −→ N ∼ (z`/δz`)2 → N ∼ (b0/z`)2

• gives the energy transfer time at scale `; ttr ∼ N(`/va) ∼ t2`/ta

• where t` is the advection time at scale `; t` ∼ `/z`
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• N expected number of accumulated random collisions∑
N δz` ∼

√
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• gives the energy transfer time at scale `; ttr ∼ N(`/va) ∼ t2`/ta
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Isotropic descriptions

• uncorrelated case < u · b >∼< (z+)
2 − (z−)

2
>∼ 0, z+

`
∼ z−

`
∼ z`

* K41, b0 ∼ 0
t+
tr ∼ t−tr ∼ t` ∼ `/z` −→ ε` ∼ ε ∼ z`

3/` within inertial range

K±
`
∼ z`

2 ∼ kE (k), ε` ∼ [kE (k)]3/2k ∼ ε E (k) ∼ ε2/3k−5/3

* dissipation scale ttr ∼ tν ∼ `2/ν → `ν ∼ (ν3/ε)
1/4

(PM ∼ 1)

* IK b0 � u` ∼ b`, ta � t`
t

+
tr ∼ t

−
tr ∼ ttr ∼ t`

2/ta ∼ `b0/z
2

` → ε+

`
∼ ε−

`
∼ ε` ∼ ε ∼ z4`/`b0

K
±
`
∼ z`

2 ∼ kE (k), ε` ∼ [kE (k)]4/2k ∼ ε E (k) ∼ (b0ε)
1/2

k
−3/2
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1/3
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2
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`
� z−

`
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`
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t+
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2
/ta ∼ `b0/z

−
`
2 → ε+
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2
/t+
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2
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2
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+
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`
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2
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`
2
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`
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/`b0
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K+

`
∼ z+

`
2 ∼ kE+(k)→ z+

`
∼
√
kE+(k),

K−
`
∼ z−

`
2 ∼ kE−(k)→ z−

`
∼
√
kE−(k)

within the inertial range k0 � k � kν

ε+

`
∼ ε−

`
∼ ε ∼ [kE+(k)][kE−(k)]k/b0 E+(k)E−(k) ∼ (b0ε)k

−3

suppose that E+(k) ∼ k−m
+
and E−(k) ∼ k−m

− −→ m+ + m− = 3

* dissipation scales (PM ∼ 1)

t
+
tr ∼ t+

ν ∼ `+2

/ν → `+
ν ∼ νb0/z−`+

ν

2

, t−tr ∼ t−ν ∼ `−
2

/ν → `−ν ∼ νb0/z+

`−
ν

2

it can be showned that k+
ν ∼ k−ν which leads to kν ∼ (ε/b0ν

2)
1/3 ∼ 1/`ν

* K41 b0 ∼ 0, a similar analysis
t

+
tr ∼ t

+

`
, t−tr ∼ t

−
`

and ε+

`
∼ ε−

`
∼ ε leads to m+ = m− = 5/3

* with dissipation wave number kν ∼ (ε/ν3)
1/4

H. Politano (UNS) HD & MHD Turbulence
26th July - 5th August 2016 28 /

41



Hydrodynamic Turbulence Magnetohydrodynamic Turbulence Some Exacts relationships Intermittency

Anisotropic descriptions

Here, let's write B = B0 + b, where B0 is an ambient magnetic �eld.
It is possible to take into account anisotropy within weak turbulence theory
(weak nonlinearity) using resonant triad waves interactions 1 theory; waves
satisfy conditions:
k(1) + k(2) = k(3), ω̄(1) + ω̄(2) ≈ ω̄(3), with dispersion relationship ω̄ = ±vak‖
As only oppositely travelling waves interact, the 3 waves must satisfy

k
(1)
‖ + k

(2)
‖ = k

(3)
‖ and vak

(1)
‖ − vak

(2)
‖ ≈ ±vak

(3)
‖ ,

the only possibilities are

k
(1)
‖ ≈ k

(3)
‖ , k

(2)
‖ ≈ 0, ω̄(2) ≈ 0

k
(2)
‖ ≈ k

(3)
‖ , k

(1)
‖ ≈ 0, ω̄(1) ≈ 0

• modes k‖ ≈ 0, ω̄ ≈ 0 are not really waves but rather quasi-2D �uctuations
highly elongated along B0

• wave (1), for ex., interacts with a quasi-static quasi-2D disturbance and the

generated wave (3) has ∼ k
(1)
‖ so negligible change in `‖ from the collision

1strict resonance is not required for the non-linear interactions between 3 waves of

form zke
i(k ·x−ω̄t)
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• For sake of simplicity, we still suppose PM ∼ 1 and zero cross helicity
(Hc ∼ 0), thus z+

`
∼ z−

`
∼ z`

• IKa, B0 � brms

* ta � t`
energy transfer time
ttr ∼ t2`/ta ∼ (`⊥/z`)2/(`‖/B0) ∼ (k‖B0)/(k2⊥z

2
`)

energy �ux down through the inertial range

ε+

`
∼ ε−

`
∼ ε` ∼ ε ∼ z2`/ttr ∼ k2⊥z

4
`/k‖B0 −→ z` ∼ (εk‖B0/k

2
⊥)

1/4

which leads to ε ∼ k2⊥(k‖k⊥E (k⊥, k‖)
2/(k‖B0) and

E (k⊥, k‖) ∼ (εB0)1/2k
−1/2
‖ k−2⊥ (Ng & Bhattacharjee, 1997)

* ta � εt`, asymptotic analytical result within Alfvén waves turbulence

theory E (k ‖, k ⊥) ∼ Ck f (k‖)k⊥
−2 (k‖ 6= 0) (Galtier et al., 2000)

(no energy transfer along B0)
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• K41a, B0 ∼ brms

"strong" turbulence regime, i.e. strong non-linear collisions of z+ and
z− propagating waves to pass energy to smaller scales, with the so
called critical balance assumption t` ∼ ta, i.e. equilibrium between
inertial forces and Maxwell stresses (Goldreich & Sridhar, 1995)

* non-linear interaction time = interaction time of 2 oppositely
travelling waves (as only 1 collision is needed): ta ∼ `‖/B0

* �ux of energy though inertial rang: ε` ∼ z2`/ta ∼ z2`/t` ∼ z3`/`⊥

* this yields z2` ∼ ε
2/3`

2/3
⊥ → z2` ∼ k⊥E (k⊥) ∼ ε2/3k⊥−2/3 and thus

E (k⊥) ∼ ε2/3k⊥−5/3

Remarks:
- `‖ ∼ B0`⊥/z` ∼ (B0/ε

1/3)`
2/3
⊥

- z2` ∼ ε
2/3`

2/3
⊥ ∼ ε`‖/B0 −→ E (k‖) ∼ (ε/B0)k−2‖

- within IK theory (ta � t`), assuming E (k⊥, k‖) ∼ k
−a
⊥ k

−b
‖ , it can be show

that 3a + 2b = 7, thus a = 5/3, b = 1 for K41a & a = 2, b = 1/2 for IKa,

and, if ta(`‖)/t`(`⊥) ∼ cst, `‖ ∼ (B0/ε
1/3
IKa

)`
2/3
⊥ (Galtier et al., 2005)
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von Kármán-Howarth equations

To obtain such von Kármán-Howarth (VKH) equations:

1) write the two-point (at x & x + r) correlations for the di�erent
components of given �elds (u,b, z±, ..), or their respective increments,
namely 1st, 2nd and 3rd order correlations, reduce the associated tensors
(or pseudo-tensors) using incompressibility condition, homogeneity and
isotropy assumptions, �nally write the tensor coe�cients in terms of up
longitudinal component (‖ to r) and un1, un2 lateral components (⊥ to r)

2) write the movement equations at two di�erent spatial locations, x &
x + r , derive the time evolution of the two-point second order correlation
of the �elds (u,b, z±, ..) and, using homogeneity, obtain the equations for
the tensor coe�cients
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• VKH eq. (1938) for homogeneous fully isotropic NS turbulence

∂

∂t
< up(x)up(x + r) >=

1

r4
∂

∂r
[r4 < u2p(x)up(x + r) >]

+ 2ν
1

r4
∂

∂r
[r4

∂

∂r
< up(x)up(x + r) >] (1)

a VKH eq. for helical �ows (skew isotropy) can be derived (Gomez et al., 2000)

• VKH for homogeneous isotropic MHD turbulence
for sake of simplicity, let consider PM = 1 (Politano & Pouquet, 1998)

∂

∂t
< z±p (x)z±p (x + r) >=

1

r4
∂

∂r
[r4 < z±p (x)z∓p (x)z±p (x + r) >]

+ 2ν
1

r4
∂

∂r
[r4

∂

∂r
< z±p (x)z±p (x + r) >] (2)

a VKH eq. for magnetic helicity can be obtained (Politano et al. 2003)
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Laws for third-order correlation of increments

• Kolmogorov "4/5" law
* consider velocity increments δui (r) = ui (x + r)− ui (x) and the 2nd
order < δui (r)δuj(r) > and 3rd order < δui (r)δuj(r)δuk(r) >
structure functions. Let replace them in VKH eq. (1), and use
∂tE = −ε = 1

2∂t < ui (x)ui (x) >= 3
2∂t < u2p(x) > (by isotropy)

* under hypothesis : i) t →∞ (stationary state) and ε is �nite per unit
mass (ν �xed) and ii) ν → 0 (ε still �xed), one obtains

< (δup(r))3 >= −4

5
εr within the inertial range

• MHD "4/3" law
a similar approach for MHD VKH eq. (2) gives in the inertial range

< (δz± · δz±)δz∓p (r) >= −4

3
ε±r

(Politano & Pouquet, 1998)

H. Politano (UNS) HD & MHD Turbulence
26th July - 5th August 2016 34 /

41



Hydrodynamic Turbulence Magnetohydrodynamic Turbulence Some Exacts relationships Intermittency

Laws for third-order correlation of increments

• Kolmogorov "4/5" law
* consider velocity increments δui (r) = ui (x + r)− ui (x) and the 2nd
order < δui (r)δuj(r) > and 3rd order < δui (r)δuj(r)δuk(r) >
structure functions. Let replace them in VKH eq. (1), and use
∂tE = −ε = 1

2∂t < ui (x)ui (x) >= 3
2∂t < u2p(x) > (by isotropy)

* under hypothesis : i) t →∞ (stationary state) and ε is �nite per unit
mass (ν �xed) and ii) ν → 0 (ε still �xed), one obtains

< (δup(r))3 >= −4

5
εr within the inertial range

• MHD "4/3" law
a similar approach for MHD VKH eq. (2) gives in the inertial range

< (δz± · δz±)δz∓p (r) >= −4

3
ε±r

(Politano & Pouquet, 1998)

H. Politano (UNS) HD & MHD Turbulence
26th July - 5th August 2016 34 /

41



Hydrodynamic Turbulence Magnetohydrodynamic Turbulence Some Exacts relationships Intermittency

Structures fonctions and scaling exponents

Two-points statistics can be described in terms of moments of velocity
increments (or "structure functions") of order p, for `� `0, namely

δvp
`
≡< [u(x + `)− u(x)]p >

where, here, u is the �eld component, say velocity, in the direction of the

separation vector ` = (`, 0, 0) (longitudinal component).

Suppose a scaling law within the inertial range `ν � `� `0; δv
p

`
∼ `ξp

exact results

* if �uctuations are bounded then ξ2p+2 > ξ2p (p =1, 2, 3, ...) (Frisch 91)

* Schwartz inequality gives ξp+q > (ξ2p + ξ2q)/2 (for all positive p, q)
* hence, d2ξp/dp

2 6 0 and ξp is a concave function of p (∀p > 0)

linear behavior of ξp predicted from phenomenology
* K41 approach ξp = p/3
* IK approach ξp = p/4 (uncorrelated case)
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Experimental results

* many analysis of observational and numerical data show departure from a
linear behavior of the scaling exponents, ξp, and this departure becomes
larger as p ↗ ... something is going wrong with the original K41 theory

* p.d.f.s of velocity increments have less and less Gaussian forms as `↘;
for ` ∼ `0 the p.d.f of this increments is essentially indistinguishable from a
Gaussian, at inertial range separations, it develops almost expontial wings,
and at even smaller scales, it takes form of "stretched exponential". This is
probably due to the strong localization of the strong �uctuations
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Interpretation and modeling

• Source of the fundamental problem with K41 : within a volume V`, it
is not the mean rate of dissipation ε that is relevant but rather the
local dissipation ε(x , t) = ν/2(∂jui + ∂iuj)

2 averaged over V` (for ex.

a sphere of center x and radius `) : ε`(x , t) ≡< ε(x , t) >V`
< εp

`
(x , t) > will depend upon ` (homogeneity) and let's suppose

< εp
`

(x , t) >∼ `τp (`ν � `� `0)

• ε` ∼ (δv`)2/t` ∼ (δv`)3/`, with ε` ∼< ε`(x , t) >, δv` has the same

scaling laws than (`ε`)1/3 (Re�ned similarity hypothesis, Kolmogorov 62)

• (δv`)p ∼ (`ε`)p/3 ∼ `p/3`τp/3 ∼ `ξp −→ ξp = p/3 + τp/3
• many attempts to take into account the in�uence of possibly strong
�uctuations in ε (or intermittency) with a modeling of τp/3 exponent
retaining the central concept of energy cascade through an extended
inertial range (Log-normal model (Kolmogorov-Obukhov 62), β−model

(Frisch et al. 78), Log-Poisson model (She-Lévêque 94))
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Scenario of modi�ed Richardson's cascade

sporadic energy tranfer through inertial range: only a small fraction of eddies of
size `� `0 is involved in the energy transfer to smaller scales, the other `-eddies
stay at rest (excitation on scale ` is con�ned, eddies are thus no more space-�lling)
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Log-Poisson model

The Log-Poisson model (She-Lévêque (SL),1994) currently provides the
best �t for the ξp-exponents computed from experimental or numerical
data.

• essential assumption: existence of a hierarchy of successive moments
of energy dissipation at a given scale ` with a power law exponent, β,
of the hierarchy (0 < β < 1)

• scaling exponent, α, for the characteristic time to dissipate the
maximum amount of energy in the most intermittent dissipative
structures; t` ∼ `α (one can set a value for α in accordance with some

phenomenology)

• C0 codimension of the dissipative structures; C0 = α/(1− β), and as
C0 6 D (where D is the dimension of space) → β 6 1− α/D

The model is thus a two-parameter model (for a general formulation of the

model see Politano & Pouquet, 1995).
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• SL HD ξp =
p

3
+ α(

1− βp/3

1− β
− p

3
)

"standard" model: α = 2/3 (K41) and C0 = 2 codimension of
tube-like dissipative structures → β = 2/3 (original SL model, 1994)

• SL MHD IK, case Hc ∼ 0 & PM ∼ 1, ξp =
p

4
+ α(

1− βp/4

1− β
− p

4
)

"standard" model: α = 1/2 (IK) and C0 = 1 codimension of sheet-
like dissipative structures → β = 1/2 (Grauer et al., 1994)

• SL MHD K41, case Hc ∼ 0 & PM ∼ 1, ξp =
p

3
+ α(

1− βp/3

1− β
− p

3
)

"standard" model: α = 2/3 (K41) and C0 = 1 codimension of
sheet-like dissipative structures → β = 1/3 (Horbury & Balogh, 1997)

In the case of anisotropic MHD see, for ex., W.-C. Müller, in Lecture Notes in

Physics, vol. 756, 2009
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