Hydro- \& Magnetohydro-dynamic Turbulence Cargèse Summer School

H. Politano

Nice Sophia Antipolis University

$$
26^{\text {th }} \text { July }-5^{\text {th }} \text { August } 2016
$$

Contents

Hydrodynamic Turbulence
Introduction
Statistical description
Spectral description of homogeneous turbulence
Phenomenological description
Magnetohydrodynamic Turbulence
MHD approximation
MHD equations
Ideal invariants in homogeneous MHD turbulence
Alfvén waves
Phenomenologies
Some Exacts relationships
von Kármán-Howarth equations
Laws for third-order correlation of increments
Intermittency
Structures fonctions and scaling exponents
Interpretation and modeling
Log-Poisson models
H. Politano (UNS)

HD \& MHD Turbulence

Introduction

Hydrodynamic turbulence (incompressible neutral flow) as a first step to understand astro- and geo-physical systems (atmosphere, ocean surface, rivers, galaxies, protostellar disks wherever electromagnetic forces are subdominant...)
Turbulence can be characterized by:

- a hierarchy of structures over a large range of spatial scales

Introduction

Hydrodynamic turbulence (incompressible neutral flow) as a first step to understand astro- and geo-physical systems (atmosphere, ocean surface, rivers, galaxies, protostellar disks wherever electromagnetic forces are subdominant...)
Turbulence can be characterized by:

- a hierarchy of structures over a large range of spatial scales

- large \& apparently random fluctuations of velocity and pressure

Introduction

Hydrodynamic turbulence (incompressible neutral flow) as a first step to understand astro- and geo-physical systems (atmosphere, ocean surface, rivers, galaxies, protostellar disks wherever electromagnetic forces are subdominant...)
Turbulence can be characterized by:

- a hierarchy of structures over a large range of spatial scales

- large \& apparently random fluctuations of velocity and pressure
- strong mixing of the fluid

Introduction

Hydrodynamic turbulence (incompressible neutral flow) as a first step to understand astro- and geo-physical systems (atmosphere, ocean surface, rivers, galaxies, protostellar disks wherever electromagnetic forces are subdominant...)
Turbulence can be characterized by:

- a hierarchy of structures over a large range of spatial scales

- large \& apparently random fluctuations of velocity and pressure
- strong mixing of the fluid
- instability characteristic; a weak initial noise can be significantly amplified (chaotic system with large number of degrees of freedom)
H. Politano (UNS)

HD \& MHD Turbulence
$26^{\text {th }}$ July - $5^{\text {th }}$ August 2016

- turbulence appears whenever the source of energy exciting fluid motions is enough intense compared to the viscous fluid resistance
- turbulence appears whenever the source of energy exciting fluid motions is enough intense compared to the viscous fluid resistance
- dimensionless control parameter: Reynolds number $R_{e}=U L_{0} / \nu$ with U and L_{0} the characteristic velocity and scale, ν is the kinematic viscosity
- turbulence appears whenever the source of energy exciting fluid motions is enough intense compared to the viscous fluid resistance
- dimensionless control parameter: Reynolds number $R_{e}=U L_{0} / \nu$ with U and L_{0} the characteristic velocity and scale, ν is the kinematic viscosity
- critical value of R_{e} at which initial instability of a steady (laminar) state: $R_{e c}$
- turbulence appears whenever the source of energy exciting fluid motions is enough intense compared to the viscous fluid resistance
- dimensionless control parameter: Reynolds number $R_{e}=U L_{0} / \nu$ with U and L_{0} the characteristic velocity and scale, ν is the kinematic viscosity
- critical value of R_{e} at which initial instability of a steady (laminar) state: $R_{\text {ec }}$
- high Reynolds number $R_{e} \gg R_{e c}$ fully developped turbulent state with some statistical properties: homogeneity, isotropy, full isotropy (away from constraints as motion of solid boundaries, velocity shear, boundary layer...)
- turbulence appears whenever the source of energy exciting fluid motions is enough intense compared to the viscous fluid resistance
- dimensionless control parameter: Reynolds number $R_{e}=U L_{0} / \nu$ with U and L_{0} the characteristic velocity and scale, ν is the kinematic viscosity
- critical value of R_{e} at which initial instability of a steady (laminar) state: $R_{e c}$
- high Reynolds number $R_{e} \gg R_{e c}$ fully developped turbulent state with some statistical properties: homogeneity, isotropy, full isotropy (away from constraints as motion of solid boundaries, velocity shear, boundary layer...)
- values of kinematic viscosity for some fluids $\left[\mathrm{cm}^{2} / \mathrm{s}\right]$
mercury 0.0012 water 0.011 air 0.015
alcohol 0.022 olive oil 1.08 glycerine 18.5
- turbulence appears whenever the source of energy exciting fluid motions is enough intense compared to the viscous fluid resistance
- dimensionless control parameter: Reynolds number $R_{e}=U L_{0} / \nu$ with U and L_{0} the characteristic velocity and scale, ν is the kinematic viscosity
- critical value of R_{e} at which initial instability of a steady (laminar) state: $R_{\text {ec }}$
- high Reynolds number $R_{e} \gg R_{e c}$ fully developped turbulent state with some statistical properties: homogeneity, isotropy, full isotropy (away from constraints as motion of solid boundaries, velocity shear, boundary layer...)
- values of kinematic viscosity for some fluids $\left[\mathrm{cm}^{2} / \mathrm{s}\right]$ mercury 0.0012 water 0.011 air 0.015 alcohol 0.022 olive oil 1.08 glycerine 18.5
- estimation of some Reynolds numbers : atmosphere; $\nu \sim 0.015 \mathrm{~cm}^{2} / \mathrm{s}, U \sim 10 \mathrm{~m} / \mathrm{s}, L \sim 15 \mathrm{~m} \rightarrow R_{e} \sim 10^{7}$ water pipe; $\nu \sim 0.01 \mathrm{~cm}^{2} / \mathrm{s}, U \sim 0.1 \mathrm{~m} / \mathrm{s}, D \sim 5 \mathrm{~cm} \rightarrow R_{e} \sim 5000$
$26^{\text {th }}$ July - $5^{\text {th }}$ August 2016

Statistical description

Fig. 3.1. Onte weconct of a singal recorded by at hot-wire (samopled at $5 k \mathrm{~Hz}$) in the sil wind turnel of ONEMA (a); sames signal, about four sceconds latel (b). Courtesy Y, Gagne and E, Hopfinger.

Fig. 3.3. Histogram for kurne signal ass in Fig. a. $1(\mathrm{n})$, eampled 5000 tinges
atime-siyam of 150 sectsich (a); sanse himtogrtem, in few reinutes later (b)

2 signals recorded each 4"; quite similar but unpredictable in their detailed behaviors from (a) to (b)
H. Politano (UNS)

HD \& MHD Turbulence
pdf of recorded signals (few minutes later); essentially identical

- if the energy source is stable, and ignoring transient effects, the flow has a "stationary random" character: although its detailed properties are unpredictable, its statistical properties are reproductible (statistically steady)
- if the energy source is stable, and ignoring transient effects, the flow has a "stationary random" character: although its detailed properties are unpredictable, its statistical properties are reproductible (statistically steady)
- velocity components and pressure, are considered as random functions of space \& time: at a given location $(\mathbf{x}, t), \mathbf{u}, p$ take random values
- if the energy source is stable, and ignoring transient effects, the flow has a "stationary random" character: although its detailed properties are unpredictable, its statistical properties are reproductible (statistically steady)
- velocity components and pressure, are considered as random functions of space \& time: at a given location (\mathbf{x}, t), \mathbf{u}, p take random values
- signals may be decomposed into mean (i.e. time average) and fluctuating components

$$
\mathbf{u}(\mathbf{x}, t)=\mathbf{U}(\mathbf{x})+\mathbf{u}^{\prime}(\mathbf{x}, t) \text { with } \mathbf{U}(\mathbf{x})=\langle\mathbf{u}(\mathbf{x}, t)\rangle
$$

determine all statistical properties of the fow is still a distant target ...

- if the energy source is stable, and ignoring transient effects, the flow has a "stationary random" character: although its detailed properties are unpredictable, its statistical properties are reproductible (statistically steady)
- velocity components and pressure, are considered as random functions of space \& time: at a given location (\mathbf{x}, t), \mathbf{u}, p take random values
- signals may be decomposed into mean (i.e. time average) and fluctuating components

$$
\mathbf{u}(\mathbf{x}, t)=\mathbf{U}(\mathbf{x})+\mathbf{u}^{\prime}(\mathbf{x}, t) \text { with } \mathbf{U}(\mathbf{x})=\langle\mathbf{u}(\mathbf{x}, t)\rangle
$$

determine all statistical properties of the fow is still a distant target ...

- preferable (theoretical point of view) to define "ensemble average" as an average over a very large number \mathcal{N} of identical experiments of a given flow (\mathcal{N} realisations): $\mathbf{U}(\mathbf{x}, t)=\langle\mathbf{u}(\mathbf{x}, t)\rangle_{\mathcal{N}}$
- result of ergodic theory: if $\mathbf{u}(\mathbf{x}, t)$ is a stationary random function of time (all ensemble quantities are time-independent) then (under certain mild subsidary conditions) ensemble average and time average yield the same result. Idem, if $\mathbf{u}(\mathbf{x}, t)$ is a stationary random function of space, ensemble average and space average give the same result
- result of ergodic theory: if $\mathbf{u}(\mathbf{x}, t)$ is a stationary random function of time (all ensemble quantities are time-independent) then (under certain mild subsidary conditions) ensemble average and time average yield the same result. Idem, if $\mathbf{u}(\mathbf{x}, t)$ is a stationary random function of space, ensemble average and space average give the same result
- Homogeneous turbulence (1): statistical stationarity with respect to one or more coordinates, i.e. all satistical properties are invariant under translations of one or more coordinates.
In practice, for ex., $\left\langle u_{i}(\mathbf{x}, t) u_{j}(\mathbf{x}+\mathbf{r}, t)\right\rangle=R_{i j}(\mathbf{r}, t)$, correlation tensor, is independent of \mathbf{x} and only depends on \mathbf{r}
- result of ergodic theory: if $\mathbf{u}(\mathbf{x}, t)$ is a stationary random function of time (all ensemble quantities are time-independent) then (under certain mild subsidary conditions) ensemble average and time average yield the same result. Idem, if $\mathbf{u}(\mathbf{x}, t)$ is a stationary random function of space, ensemble average and space average give the same result
- Homogeneous turbulence (1): statistical stationarity with respect to one or more coordinates, i.e. all satistical properties are invariant under translations of one or more coordinates.
In practice, for ex., $\left\langle u_{i}(\mathbf{x}, t) u_{j}(\mathbf{x}+\mathbf{r}, t)\right\rangle=R_{i j}(\mathbf{r}, t)$, correlation tensor, is independent of \mathbf{x} and only depends on r
- Isotropic turbulence (2): statistical stationarity with respect to all directions, i.e. all satistical properties are invariant under rotations. For ex., $\left\langle u_{i}(\mathbf{x}, t) u_{j}(\mathbf{x}+\mathbf{r}, t)\right\rangle=R_{i j}(r, t)$ with $r=|\mathbf{r}|((1)+(2))$
- result of ergodic theory: if $\mathbf{u}(\mathbf{x}, t)$ is a stationary random function of time (all ensemble quantities are time-independent) then (under certain mild subsidary conditions) ensemble average and time average yield the same result. Idem, if $\mathbf{u}(\mathbf{x}, t)$ is a stationary random function of space, ensemble average and space average give the same result
- Homogeneous turbulence (1): statistical stationarity with respect to one or more coordinates, i.e. all satistical properties are invariant under translations of one or more coordinates.
In practice, for ex., $\left\langle u_{i}(\mathbf{x}, t) u_{j}(\mathbf{x}+\mathbf{r}, t)\right\rangle=R_{i j}(\mathbf{r}, t)$, correlation tensor, is independent of x and only depends on r
- Isotropic turbulence (2): statistical stationarity with respect to all directions, i.e. all satistical properties are invariant under rotations. For ex., $\left\langle u_{i}(\mathbf{x}, t) u_{j}(\mathbf{x}+\mathbf{r}, t)\right\rangle=R_{i j}(r, t)$ with $r=|\mathbf{r}|((1)+(2))$
- Reflexionally symmetric turbulence (3): statistical stationarity under change from right-handed to left-handed frame of reference, i.e. all satistical properties are invariant under parity transformations. For ex., $R_{i j}(r, t)$ has no antisymmetric part ((1)+(2)+(3) or "full isotropy")
H. Politano (UNS)

HD \& MHD Turbulence

Spectral description of homogeneous turbulence

Suppose that $\mathbf{u}(\mathbf{x}, t)$ is a field of homogeneous turbulence with $\langle\mathbf{u}\rangle=0$ (mean velocity suppressed by Galilean transformation) and consider its instantaneous structure (i.e. omit explicit time dependence from now on):

- Fourier transform is formally (as a generalised function) defined by $\hat{\mathbf{u}}(\mathbf{k})=1 /(2 \pi)^{3} \iiint \mathbf{u}(\mathbf{x}) \mathrm{e}^{-i \mathbf{k} \cdot \mathbf{x}} d \mathbf{x}=\hat{\mathbf{u}}^{*}(-\mathbf{k})$ where $\hat{\mathbf{u}}(\mathbf{k})$ is Fourier amplitude, $\mathbf{k}=\left(k_{x}, k_{y}, k_{z}\right)$ wave-vector and $\mathbf{x}=(x, y, z)$ space-point

Spectral description of homogeneous turbulence

Suppose that $\mathbf{u}(\mathbf{x}, t)$ is a field of homogeneous turbulence with $\langle\mathbf{u}\rangle=0$ (mean velocity suppressed by Galilean transformation) and consider its instantaneous structure (i.e. omit explicit time dependence from now on):

- Fourier transform is formally (as a generalised function) defined by $\hat{\mathbf{u}}(\mathbf{k})=1 /(2 \pi)^{3} \iiint \mathbf{u}(\mathbf{x}) \mathrm{e}^{-i \mathbf{k} \cdot \mathbf{x}} d \mathbf{x}=\hat{\mathbf{u}}^{*}(-\mathbf{k})$ where $\hat{\mathbf{u}}(\mathbf{k})$ is Fourier amplitude, $\mathbf{k}=\left(k_{x}, k_{y}, k_{z}\right)$ wave-vector and $\mathbf{x}=(x, y, z)$ space-point
- the inverse formula is $\mathbf{u}(\mathbf{x})=\iiint \hat{\mathbf{u}}(\mathbf{k}) \mathrm{e}^{i \mathbf{k} \cdot \mathbf{x}} d \mathbf{k}$

Spectral description of homogeneous turbulence

Suppose that $\mathbf{u}(\mathbf{x}, t)$ is a field of homogeneous turbulence with $\langle\mathbf{u}\rangle=0$ (mean velocity suppressed by Galilean transformation) and consider its instantaneous structure (i.e. omit explicit time dependence from now on):

- Fourier transform is formally (as a generalised function) defined by $\hat{\mathbf{u}}(\mathbf{k})=1 /(2 \pi)^{3} \iiint \mathbf{u}(\mathbf{x}) \mathrm{e}^{-i \mathbf{k} \cdot \mathbf{x}} d \mathbf{x}=\hat{\mathbf{u}}^{*}(-\mathbf{k})$ where $\hat{\mathbf{u}}(\mathbf{k})$ is Fourier amplitude, $\mathbf{k}=\left(k_{x}, k_{y}, k_{z}\right)$ wave-vector and $\mathbf{x}=(x, y, z)$ space-point
- the inverse formula is $\mathbf{u}(\mathbf{x})=\iiint \hat{\mathbf{u}}(\mathbf{k}) \mathrm{e}^{i \mathbf{k} \cdot \mathbf{x}} d \mathbf{k}$
- incompressibility $\nabla \cdot \mathbf{u}(\mathbf{x})=0 \forall \mathbf{x} \Longrightarrow \mathbf{k} \cdot \hat{\mathbf{u}}(\mathbf{k})=0 \forall \mathbf{k} \longrightarrow$ Fourier decomposition is a decomposition into transverse waves with \mathbf{k}

Spectral description of homogeneous turbulence

Suppose that $\mathbf{u}(\mathbf{x}, t)$ is a field of homogeneous turbulence with $\langle\mathbf{u}\rangle=0$ (mean velocity suppressed by Galiean transformation) and consider its instantaneous structure (i.e. omit explicit time dependence from now on):

- Fourier transform is formally (as a generalised function) defined by $\hat{\mathbf{u}}(\mathbf{k})=1 /(2 \pi)^{3} \iiint \mathbf{u}(\mathbf{x}) \mathrm{e}^{-i \mathbf{k} \cdot \mathbf{x}} d \mathbf{x}=\hat{\mathbf{u}}^{*}(-\mathbf{k})$ where $\hat{\mathbf{u}}(\mathbf{k})$ is Fourier amplitude, $\mathbf{k}=\left(k_{x}, k_{y}, k_{z}\right)$ wave-vector and $\mathbf{x}=(x, y, z)$ space-point
- the inverse formula is $\mathbf{u}(\mathbf{x})=\iiint \hat{\mathbf{u}}(\mathbf{k}) \mathrm{e}^{i \mathbf{k} \cdot \mathbf{x}} d \mathbf{k}$
- incompressibility $\nabla \cdot \mathbf{u}(\mathbf{x})=0 \forall \mathbf{x} \Longrightarrow \mathbf{k} \cdot \hat{\mathbf{u}}(\mathbf{k})=0 \forall \mathbf{k} \longrightarrow$ Fourier decomposition is a decomposition into transverse waves with \mathbf{k}
- Second order correlation tensor and spectrum tensor of the velocity (Cramer's theorem for a stationary random process)

$$
\begin{aligned}
& R_{i j}(x)=\left\langle u_{i}(x) u_{j}(\tilde{\boldsymbol{x}})\right\rangle=\int \Phi_{i j}(\boldsymbol{k}) \mathrm{e}^{i \boldsymbol{k} \cdot \boldsymbol{r} d \boldsymbol{k} \quad \text { with } \tilde{\boldsymbol{x}}=\boldsymbol{x}+\boldsymbol{r}, ~(2)} \\
& \Phi_{i j}(\boldsymbol{k})=1 /(2 \pi)^{3} \int R_{i j}(\boldsymbol{r}) \mathrm{e}^{-i \boldsymbol{k} \cdot \boldsymbol{r}} d \boldsymbol{r} \\
& \text { where } \int \cdot d x \equiv \iiint \cdot d x
\end{aligned}
$$

$\Phi_{i j}(\boldsymbol{k})$ is a complex tensor such as $\int\left|\Phi_{i j}(\boldsymbol{k})\right| d \boldsymbol{k}<\infty$ and $\Phi=X_{i} X_{j}^{*} \Phi_{i j}(\boldsymbol{k})$ quadratic form $\geqslant 0(\forall \mathbf{X} \in \mathbb{C})$

- Homogeneity $\longrightarrow R_{i j}(\mathbf{r})=R_{j i}(-\mathbf{r})$ and $\Phi_{i j}^{*}(\mathbf{k})=\Phi_{i j}(-\mathbf{k})=\Phi_{j i}(\mathbf{k})$
$\Phi_{i j}(\boldsymbol{k})$ is a complex tensor such as $\int\left|\Phi_{i j}(\boldsymbol{k})\right| d \boldsymbol{k}<\infty$ and $\Phi=X_{i} X_{j}^{*} \Phi_{i j}(\boldsymbol{k})$ quadratic form $\geqslant 0(\forall \mathbf{X} \in \mathbb{C})$
- Homogeneity $\longrightarrow R_{i j}(\mathbf{r})=R_{j i}(-\mathbf{r})$ and $\Phi_{i j}^{*}(\mathbf{k})=\Phi_{i j}(-\mathbf{k})=\Phi_{j i}(\mathbf{k})$
- Incompressibility $\longrightarrow \partial R_{i j}(\mathbf{r}) / \partial r_{j}=\partial R_{i j}(\mathbf{r}) / \partial r_{i}=0$ and $k_{j} \Phi_{i j}(\mathbf{k})=k_{i} \Phi_{i j}(\mathbf{k})$
$\Phi_{i j}(\boldsymbol{k})$ is a complex tensor such as $\int\left|\Phi_{i j}(\boldsymbol{k})\right| d \boldsymbol{k}<\infty$ and $\Phi=X_{i} X_{j}^{*} \Phi_{i j}(\boldsymbol{k})$ quadratic form $\geqslant 0(\forall \mathbf{X} \in \mathbb{C})$
- Homogeneity $\longrightarrow R_{i j}(\mathbf{r})=R_{j i}(-\mathbf{r})$ and $\Phi_{i j}^{*}(\mathbf{k})=\Phi_{i j}(-\mathbf{k})=\Phi_{j i}(\mathbf{k})$
- Incompressibility $\longrightarrow \partial R_{i j}(\mathbf{r}) / \partial r_{j}=\partial R_{i j}(\mathbf{r}) / \partial r_{i}=0$ and $k_{j} \Phi_{i j}(\mathbf{k})=k_{i} \Phi_{i j}(\mathbf{k})$
- $\Phi_{i j}(\mathbf{k})=\underbrace{\Phi_{i j}^{(s)}(\mathbf{k})}_{\text {symmetric real }}+\underbrace{\Phi_{i j}^{\mathrm{as}}(\mathbf{k})}_{\text {antisymmetric pure imaginary }}$
$\Phi_{i j}(\boldsymbol{k})$ is a complex tensor such as $\int\left|\Phi_{i j}(\boldsymbol{k})\right| d \boldsymbol{k}<\infty$ and $\Phi=X_{i} X_{j}^{*} \Phi_{i j}(\boldsymbol{k})$ quadratic form $\geqslant 0(\forall \mathbf{X} \in \mathbb{C})$
- Homogeneity $\longrightarrow R_{i j}(\mathbf{r})=R_{j i}(-\mathbf{r})$ and $\Phi_{i j}^{*}(\mathbf{k})=\Phi_{i j}(-\mathbf{k})=\Phi_{j i}(\mathbf{k})$
- Incompressibility $\longrightarrow \partial R_{i j}(\mathbf{r}) / \partial r_{j}=\partial R_{i j}(\mathbf{r}) / \partial r_{i}=0$ and

$$
k_{j} \Phi_{i j}(\mathbf{k})=k_{i} \Phi_{i j}(\mathbf{k})
$$

- $\Phi_{i j}(\mathbf{k})=\underbrace{\Phi_{i j}^{(s)}(\mathbf{k})}_{\text {symmetric real }}+\underbrace{\Phi_{i j}^{a s}(\mathbf{k})}_{\text {antisymmetric pure imaginary }}$
- Remark :

$$
\begin{aligned}
&\left\langle\hat{u}_{i}^{*}(\mathbf{k}) \hat{u}_{j}(\tilde{\mathbf{k}})\right\rangle= 1 /(2 \pi)^{6}\left\langle\iint u_{i}(\mathbf{x}) u_{j}(\tilde{\mathbf{x}}) \mathrm{e}^{i \mathbf{k} \cdot \mathbf{x}} \mathrm{e}^{-i \tilde{\mathbf{k}} \cdot \tilde{\mathbf{x}}} d \mathbf{x} d \tilde{\mathbf{x}}\right\rangle \\
&= 1 /(2 \pi)^{6} \iint\left\langle u_{i}(\mathbf{x}) u_{j}(\tilde{\mathbf{x}})\right\rangle \mathrm{e}^{i \mathbf{k} \cdot \mathbf{x}-i \tilde{\mathbf{k}} \cdot \tilde{\mathbf{x}}} d \mathbf{x} d \tilde{\mathbf{x}} \\
&= 1 /(2 \pi)^{6} \iint R_{i j}(\mathbf{r}) \mathrm{e}^{-i \tilde{\mathbf{k}} \cdot \mathbf{r}} \mathrm{e}^{i(\mathbf{k}-\tilde{\mathbf{k}}) \cdot \mathbf{x}} d \mathbf{x} d \mathbf{r} \\
&=1 /(2 \pi)^{3} \int R_{i j}(\mathbf{r}) \mathrm{e}^{-i \tilde{\mathbf{k}} \cdot \mathbf{r}} \quad 1 /(2 \pi)^{3} \int \mathrm{e}^{i(\mathbf{k}-\tilde{\mathbf{k}}) \cdot \mathbf{x}} d \mathbf{x} d \mathbf{r}=\Phi_{i j}(\tilde{\mathbf{k}}) \delta(\mathbf{k}-\tilde{\mathbf{k}})
\end{aligned}
$$

Energy spectrum function

$$
\begin{array}{r}
E=1 / 2\left\langle\mathbf{u}(\mathbf{x})^{2}\right\rangle=1 / 2 \iint\left\langle\hat{u}_{i}^{*}(\mathbf{k}) \hat{u}_{i}(\tilde{\mathbf{k}})\right\rangle e^{i \mathbf{k} \cdot \mathbf{x}-i \tilde{\mathbf{k}} \cdot \tilde{x}} d \mathbf{k} d \tilde{\mathbf{k}} \\
=1 / 2 \iint \Phi_{i i}(\tilde{\mathbf{k}}) \mathrm{e}^{i \mathbf{k} \cdot \mathbf{x}-i \tilde{\mathbf{k}} \cdot \tilde{\mathbf{x}}} \delta(\mathbf{k}-\tilde{\mathbf{k}}) d \mathbf{k} d \tilde{\mathbf{k}}=1 / 2 \int \Phi_{i i}(\mathbf{k}) d \mathbf{k}
\end{array}
$$

Spectral density of energy is $\mathcal{E}(\mathbf{k}) \equiv 1 / 2 \Phi_{i i}(\mathbf{k})$. If isotropy is assumed, no dependence on direction of \mathbf{r} or \mathbf{k}, angle averaging on sphere $S(k)$ of radius $k=|\boldsymbol{k}|$ in \boldsymbol{k}-space gives

$$
E(k)=4 \pi k^{2} \mathcal{E}(\mathbf{k})=1 / 2 \int_{S(k)} \Phi_{i i}(\mathbf{k}) d S \longrightarrow \int_{0}^{\infty} E(k) d k=1 / 2\left\langle\mathbf{u}(\mathbf{x})^{2}\right\rangle
$$

$E(k) d k$ may be interpreted as the contribution to turbulent energy from a spherical annulus ($k, k+d k$) of wave-numbers $k=|\boldsymbol{k}|$

- Enstrophy spectrum function with vorticity $\boldsymbol{\omega}=\nabla \times \mathbf{u}=\int i \mathbf{k} \times \hat{\mathbf{u}}(\mathbf{k}) \mathrm{e}^{i \mathbf{k} \cdot \mathbf{x}} d \mathbf{x}$

$$
\Omega=1 / 2\left\langle\boldsymbol{\omega}^{2}(\mathbf{x})\right\rangle=1 / 2 \int \Omega_{i i}(\boldsymbol{k}) d \boldsymbol{k}=1 / 2 \int k^{2} \Phi_{i i}(\boldsymbol{k}) d \boldsymbol{k}
$$

For isotropic turbulence $1 / 2\left\langle\boldsymbol{\omega}^{2}(\mathbf{x})\right\rangle=\int_{0}^{\infty} \Omega(k) d k=\int_{0}^{\infty} k^{2} E(k) d k$

- Enstrophy spectrum function with vorticity $\boldsymbol{\omega}=\nabla \times \mathbf{u}=\int i \mathbf{k} \times \hat{\mathbf{u}}(\mathbf{k}) \mathrm{e}^{i \mathbf{k} \cdot \mathbf{x}} d \mathbf{x}$

$$
\Omega=1 / 2\left\langle\boldsymbol{\omega}^{2}(\mathbf{x})\right\rangle=1 / 2 \int \Omega_{i i}(\boldsymbol{k}) d \boldsymbol{k}=1 / 2 \int k^{2} \Phi_{i i}(\boldsymbol{k}) d \boldsymbol{k}
$$

For isotropic turbulence $1 / 2\left\langle\boldsymbol{\omega}^{2}(\mathbf{x})\right\rangle=\int_{0}^{\infty} \Omega(k) d k=\int_{0}^{\infty} k^{2} E(k) d k$

- Helicity spectrum function

$$
H^{c}=\langle\boldsymbol{u}(\boldsymbol{x}) \cdot \boldsymbol{\omega}(\boldsymbol{x})\rangle=i \epsilon_{i j m} \int k_{j} \Phi_{i m}(\boldsymbol{k}) d \boldsymbol{k}=\int \mathcal{H}(\boldsymbol{k}) d \boldsymbol{k}
$$

Note that helicity is a pseudo-scalar. For isotropic turbulence $H(k)=4 \pi k^{2} \mathcal{H}(\mathbf{k}) \longrightarrow \quad\langle\boldsymbol{u} \cdot \boldsymbol{\omega}\rangle=\int_{0}^{\infty} H(k) d k$

- Enstrophy spectrum function with vorticity $\boldsymbol{\omega}=\nabla \times \mathbf{u}=\int i \mathbf{k} \times \hat{\mathbf{u}}(\mathbf{k}) \mathrm{e}^{i \mathbf{k} \cdot \mathbf{x}} d \mathbf{x}$

$$
\Omega=1 / 2\left\langle\boldsymbol{\omega}^{2}(\mathbf{x})\right\rangle=1 / 2 \int \Omega_{i i}(\boldsymbol{k}) d \boldsymbol{k}=1 / 2 \int k^{2} \Phi_{i i}(\boldsymbol{k}) d \boldsymbol{k}
$$

For isotropic turbulence $1 / 2\left\langle\boldsymbol{\omega}^{2}(\mathbf{x})\right\rangle=\int_{0}^{\infty} \Omega(k) d k=\int_{0}^{\infty} k^{2} E(k) d k$

- Helicity spectrum function

$$
H^{c}=\langle\boldsymbol{u}(\boldsymbol{x}) \cdot \boldsymbol{\omega}(\boldsymbol{x})\rangle=i \epsilon_{i j m} \int k_{j} \Phi_{i m}(\boldsymbol{k}) d \boldsymbol{k}=\int \mathcal{H}(\boldsymbol{k}) d \boldsymbol{k}
$$

Note that helicity is a pseudo-scalar. For isotropic turbulence $H(k)=4 \pi k^{2} \mathcal{H}(\mathbf{k}) \longrightarrow \quad\langle\boldsymbol{u} \cdot \boldsymbol{\omega}\rangle=\int_{0}^{\infty} H(k) d k$

- Form of the spectrum tensor $\Phi_{i j}(\boldsymbol{k})$ for isotropic turbulence

$$
\Phi_{i j}(\boldsymbol{k})=\frac{E(k)}{4 \pi k^{2}}\left[\delta_{i j}-\frac{k_{i} k_{j}}{k^{2}}\right]+i \frac{H(k)}{8 \pi k^{4}} \epsilon_{i j m} k_{m}
$$

If, moreover, turbulence is reflexionally symmetric (or fully isotropic), $H(k)=0$ and $\Phi_{i j}(\boldsymbol{k})=\frac{E(k)}{4 \pi k^{2}}\left[\delta_{i j}-\frac{k_{i} k_{j}}{k^{2}}\right]$
H. Politano (UNS)

HD \& MHD Turbulence

Phenomenological description (K41)

Consider an idealised situation: a statistically stationary flow forced by a volume force \mathbf{F} which is stationary, random, homogeneous and fully isotropic, on characteristic scale $\ell_{0} \sim 1 / k_{0}$. The velocity obeys the usual Navier-Stokes equation (with density $\rho=c s t$, and ν kinematic viscosity)

$$
\begin{aligned}
& \partial \boldsymbol{u} / \partial t+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}=-\frac{1}{\rho} \nabla p+\mathbf{F}+\nu \Delta \boldsymbol{u} \\
& \nabla \cdot \boldsymbol{u}=0 \\
& \text { B.C. }
\end{aligned}
$$

What happens to the injected energy?

$$
\begin{aligned}
\left\langle\frac{1}{2} \partial_{t} \boldsymbol{u}^{2}+\boldsymbol{u} \cdot(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}\right\rangle & =\left\langle\frac{1}{\rho} \boldsymbol{u} \cdot \nabla p+\mathbf{F} \cdot \boldsymbol{u}+\nu \boldsymbol{u} \cdot \Delta \boldsymbol{u}\right\rangle \\
\partial_{t} \frac{1}{2}\left\langle\boldsymbol{u}^{2}\right\rangle & =\langle\mathbf{F} \cdot \boldsymbol{u}\rangle-\nu\left\langle\boldsymbol{\omega}^{2}\right\rangle
\end{aligned}
$$

with $\langle\cdot\rangle$ ensemble, or time or space average, and using the following results implied by icompressibility and homogeneity
H. Politano (UNS)

HD \& MHD Turbulence

$$
\begin{aligned}
\langle\boldsymbol{u} \cdot(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}\rangle & =\left\langle(\boldsymbol{u} \cdot \nabla) \frac{1}{2} \boldsymbol{u}^{2} /\right\rangle=\nabla \cdot\left\langle\frac{1}{2} \boldsymbol{u} \boldsymbol{u}^{2}\right\rangle=0 \\
\langle\boldsymbol{u} \cdot \nabla p / \rho\rangle & =\nabla \cdot\langle\boldsymbol{u} / \rho\rangle=0 \\
\langle\boldsymbol{u} \cdot \Delta \boldsymbol{u}\rangle & =\left\langle\nabla \cdot(\boldsymbol{\omega} \times \boldsymbol{u})-\boldsymbol{\omega}^{2}\right\rangle=-\left\langle\boldsymbol{\omega}^{2}\right\rangle
\end{aligned}
$$

- For a turbulent flow statistically stationary with respect to time, i.e. $\frac{1}{2}\left\langle\boldsymbol{u}^{2}\right\rangle=$ cst ,

$$
\begin{aligned}
\langle\boldsymbol{u} \cdot(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}\rangle & =\left\langle(\boldsymbol{u} \cdot \nabla) \frac{1}{2} \boldsymbol{u}^{2} /\right\rangle=\nabla \cdot\left\langle\frac{1}{2} \boldsymbol{u} \boldsymbol{u}^{2}\right\rangle=0 \\
\langle\boldsymbol{u} \cdot \nabla p / \rho\rangle & =\nabla \cdot\langle\boldsymbol{u} / \rho\rangle=0 \\
\langle\boldsymbol{u} \cdot \Delta \boldsymbol{u}\rangle & =\left\langle\nabla \cdot(\boldsymbol{\omega} \times \boldsymbol{u})-\boldsymbol{\omega}^{2}\right\rangle=-\left\langle\boldsymbol{\omega}^{2}\right\rangle
\end{aligned}
$$

- For a turbulent flow statistically stationary with respect to time, i.e. $\frac{1}{2}\left\langle\boldsymbol{u}^{2}\right\rangle=$ cst,

$$
\underbrace{\langle\boldsymbol{F} \cdot \boldsymbol{u}\rangle}_{\text {injection mean rate }}=\underbrace{\nu\left\langle\boldsymbol{\omega}^{2}\right\rangle}_{\text {energy dissipation mean rate }}=\epsilon
$$

- also written in terms of the viscous stress tensor $\left[\sigma_{i j}\right]=\left[\partial_{j} u_{i}+\partial_{i} u_{j}\right]$; $\epsilon=\frac{\nu}{2}\left\langle\left(\partial_{j} u_{i}+\partial_{i} u_{j}\right)^{2}\right\rangle$, dimensions $[\epsilon]=L^{2} T^{-3}$

$$
\begin{aligned}
\langle\boldsymbol{u} \cdot(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}\rangle & =\left\langle(\boldsymbol{u} \cdot \nabla) \frac{1}{2} \boldsymbol{u}^{2} /\right\rangle=\nabla \cdot\left\langle\frac{1}{2} \boldsymbol{u} \boldsymbol{u}^{2}\right\rangle=0 \\
\langle\boldsymbol{u} \cdot \nabla p / \rho\rangle & =\nabla \cdot\langle\boldsymbol{u} / \rho\rangle=0 \\
\langle\boldsymbol{u} \cdot \Delta \boldsymbol{u}\rangle & =\left\langle\nabla \cdot(\boldsymbol{\omega} \times \boldsymbol{u})-\boldsymbol{\omega}^{2}\right\rangle=-\left\langle\boldsymbol{\omega}^{2}\right\rangle
\end{aligned}
$$

- For a turbulent flow statistically stationary with respect to time, i.e. $\frac{1}{2}\left\langle\boldsymbol{u}^{2}\right\rangle=$ cst,

- also written in terms of the viscous stress tensor $\left[\sigma_{i j}\right]=\left[\partial_{j} u_{i}+\partial_{i} u_{j}\right]$; $\epsilon=\frac{\nu}{2}\left\langle\left(\partial_{j} u_{i}+\partial_{i} u_{j}\right)^{2}\right\rangle$, dimensions $[\epsilon]=L^{2} T^{-3}$
- Energy dissipation cannot arise at scale ℓ_{0}, at that scale, the Reynods number is very large and dissipation is very small \Longrightarrow physical picture of the Richardson's energy cascade (1926)

Scenario of the energy cascade and viscous cut-off: Richardson's cascade

2 basic assumptions within the inertial range: scale-invariance (space-filling eddies, $0<r<1$) \& localness of interactions (energy flux at scales $\sim \ell$ mainly involves scales of comparable size)
H. Politano (UNS)

HD \& MHD Turbulence
$26^{\text {th }}$ July - $5^{\text {th }}$ August 2016

In this scenario, ϵ plays a triple role :

- mean rate of injection of energy on scale ℓ_{0} (also denoted L_{0} or "integral scale")

In this scenario, ϵ plays a triple role :

- mean rate of injection of energy on scale ℓ_{0} (also denoted L_{0} or "integral scale")
- mean rate of flux of energy throughout the inertial range $\ell_{\nu} \ll \ell \ll \ell_{0}$ (with ℓ_{ν} the dissipative scale, also denoted η or "Kolmogorov scale")

In this scenario, ϵ plays a triple role :

- mean rate of injection of energy on scale ℓ_{0} (also denoted L_{0} or "integral scale")
- mean rate of flux of energy throughout the inertial range $\ell_{\nu} \ll \ell \ll \ell_{0}$ (with ℓ_{ν} the dissipative scale, also denoted η or "Kolmogorov scale")
- mean rate of dissipation of energy on scales $\ell \ll \ell_{\nu}$

Phenomenological tools to describe turbulent flow properties on scales ℓ within the inertial range $\left(\ell_{\nu} \ll \ell \ll \ell_{0}\right)$ with typical velocity u_{ℓ},

- u_{0} (could be $u_{r m s}$) is the velocity associated to the most energetic eddies of size $\sim \ell_{0}$

Phenomenological tools to describe turbulent flow properties on scales ℓ within the inertial range ($\ell_{\nu} \ll \ell \ll \ell_{0}$) with typical velocity u_{ℓ},

- u_{0} (could be $u_{r m s}$) is the velocity associated to the most energetic eddies of size $\sim \ell_{0}$
- integral Reynolds number: $R_{e} \sim u_{0} \ell_{0} / \nu$

Phenomenological tools to describe turbulent flow properties on scales ℓ within the inertial range ($\ell_{\nu} \ll \ell \ll \ell_{0}$) with typical velocity u_{ℓ},

- u_{0} (could be $u_{r m s}$) is the velocity associated to the most energetic eddies of size $\sim \ell_{0}$
- integral Reynolds number: $R_{e} \sim u_{0} \ell_{0} / \nu$
- Reynolds number on scale $\sim \ell: R_{\ell} \sim u_{\ell} \ell / \nu$

Phenomenological tools to describe turbulent flow properties on scales ℓ within the inertial range ($\ell_{\nu} \ll \ell \ll \ell_{0}$) with typical velocity U_{ℓ},

- u_{0} (could be $u_{r m s}$) is the velocity associated to the most energetic eddies of size $\sim \ell_{0}$
- integral Reynolds number: $R_{e} \sim u_{0} \ell_{0} / \nu$
- Reynolds number on scale $\sim \ell: R_{\ell} \sim u_{\ell} \ell / \nu$
- eddy turnover time (or nonlinear time): $t_{\ell} \sim \ell / u_{\ell}$

Phenomenological tools to describe turbulent flow properties on scales ℓ within the inertial range ($\ell_{\nu} \ll \ell \ll \ell_{0}$) with typical velocity u_{ℓ},

- u_{0} (could be $u_{r m s}$) is the velocity associated to the most energetic eddies of size $\sim \ell_{0}$
- integral Reynolds number: $R_{e} \sim u_{0} \ell_{0} / \nu$
- Reynolds number on scale $\sim \ell: R_{\ell} \sim u_{\ell} \ell / \nu$
- eddy turnover time (or nonlinear time): $t_{\ell} \sim \ell / u_{\ell}$
- viscous diffusion time (attenuation of excitation) on scale $\sim \ell$: $t_{\nu} \sim \ell^{2} / \nu$

Phenomenological tools to describe turbulent flow properties on scales ℓ within the inertial range $\left(\ell_{\nu} \ll \ell \ll \ell_{0}\right)$ with typical velocity u_{ℓ},

- u_{0} (could be $u_{r m s}$) is the velocity associated to the most energetic eddies of size $\sim \ell_{0}$
- integral Reynolds number: $R_{e} \sim u_{0} \ell_{0} / \nu$
- Reynolds number on scale $\sim \ell: R_{\ell} \sim u_{\ell} \ell / \nu$
- eddy turnover time (or nonlinear time): $t_{\ell} \sim \ell / u_{\ell}$
- viscous diffusion time (attenuation of excitation) on scale $\sim \ell$: $t_{\nu} \sim \ell^{2} / \nu$
- kinetic energy on scale $\sim \ell: K_{\ell} \sim u_{\ell}^{2} / 2$

Phenomenological tools to describe turbulent flow properties on scales ℓ within the inertial range $\left(\ell_{\nu} \ll \ell \ll \ell_{0}\right)$ with typical velocity u_{ℓ},

- u_{0} (could be $u_{r m s}$) is the velocity associated to the most energetic eddies of size $\sim \ell_{0}$
- integral Reynolds number: $R_{e} \sim u_{0} \ell_{0} / \nu$
- Reynolds number on scale $\sim \ell: R_{\ell} \sim u_{\ell} \ell / \nu$
- eddy turnover time (or nonlinear time): $t_{\ell} \sim \ell / u_{\ell}$
- viscous diffusion time (attenuation of excitation) on scale $\sim \ell$: $t_{\nu} \sim \ell^{2} / \nu$
- kinetic energy on scale $\sim \ell: K_{\ell} \sim u_{\ell}^{2} / 2$
- energy flux on scale $\sim \ell$:
$\epsilon_{\ell} \sim K_{\ell} / t_{\ell} \sim u_{\ell}^{3} / \ell \sim \epsilon \sim u_{0}^{3} / \ell_{0} \rightarrow u_{\ell} \sim(\epsilon \ell)^{1 / 3}$

$$
\text { and } \rightarrow u_{\ell} \sim u_{0}\left(\ell / \ell_{0}\right)^{1 / 3}
$$

Characteristic scales of the flow

- dissipation scale: $t_{\ell} \sim t_{\nu} \rightarrow \ell_{\nu} /{ }^{u} \ell_{\nu} \sim \ell_{\nu}^{2} \rightarrow \ell_{\nu} \sim \nu / u_{\ell_{\nu}}$
- with $u_{\ell_{\nu}} \sim \epsilon^{1 / 3} \ell_{\nu}^{1 / 3} \rightarrow \ell_{\nu} \sim\left(\nu^{3} / \epsilon\right)^{1 / 4}$
- with $u_{\ell_{\nu}} \sim u_{0}\left(\ell_{\nu} / \ell_{0}\right)^{1 / 3} \rightarrow \ell_{\nu} \sim \ell_{0} R_{e}^{-3 / 4} \rightarrow R_{e} \sim\left(\ell_{0} / \ell_{\nu}\right)^{4 / 3}$
- "Taylor scale": $\lambda \sim(E / \Omega)^{1 / 2}$ (isotropic case) with $E=\left\langle\boldsymbol{u}^{2}\right\rangle / 2 \sim u_{0}{ }^{2} / 2 \& \Omega=\left\langle\omega^{2}\right\rangle / 2=\frac{1}{2} \epsilon / \nu \rightarrow \lambda \sim(E \nu / \epsilon)^{1 / 2}$ or $\lambda \sim \ell_{0} R_{e}^{-1 / 2}$ and $R_{\lambda} \sim u_{0} \lambda / \nu \sim R_{e}^{1 / 2}$
- integral scale: $\ell_{0} \sim u_{0}^{3} / \epsilon \sim E^{3 / 2} / \epsilon$
- estimation of the number of degrees of freedom: $N \sim \ell_{0}{ }^{3} / \ell_{\nu}^{3} \sim R_{e}^{9 / 4}$, correct if motions at inertial range are fully disorganized, but coherent structures, vortex filaments,.. do exist thus the presence of some order

Energy and Enstrophy spectra for isotropic turbulence

- energy spectrum $E(k) ; E=1 / 2\left\langle\mathbf{u}(\mathbf{x})^{2}\right\rangle=\int_{0}^{\infty} E(k) d k$ the \mathbf{k}-space is splitted into spherical shells, for ex. $k_{0} 2^{p-1}<k<k_{0} 2^{p}$, and one can write

$$
E=\sum_{p} K_{p}=\sum_{p} E\left(k_{p}\right) k_{p} \quad \text { (by dimensional consistency) }
$$

shell by shell, it gives

$$
K_{p} \sim u_{p}^{2} / 2 \sim\left(\epsilon / k_{p}\right)^{2 / 3} \sim E\left(k_{p}\right) k_{p} \rightarrow E\left(k_{p}\right) \sim \epsilon^{2 / 3} k_{p}^{-5 / 3}
$$

hence the Kolmogorov (K41) spectrum within the inertial range:

$$
k_{0} \ll k \ll k_{\nu} \quad E(k)=C \epsilon^{2 / 3} k^{-5 / 3}
$$

Energy and Enstrophy spectra for isotropic turbulence

- energy spectrum $E(k) ; E=1 / 2\left\langle\mathbf{u}(\mathbf{x})^{2}\right\rangle=\int_{0}^{\infty} E(k) d k$ the \mathbf{k}-space is splitted into spherical shells, for ex. $k_{0} 2^{p-1}<k<k_{0} 2^{p}$, and one can write

$$
E=\sum_{p} K_{p}=\sum_{p} E\left(k_{p}\right) k_{p} \quad \text { (by dimensional consistency) }
$$

shell by shell, it gives

$$
K_{p} \sim u_{p}^{2} / 2 \sim\left(\epsilon / k_{p}\right)^{2 / 3} \sim E\left(k_{p}\right) k_{p} \rightarrow E\left(k_{p}\right) \sim \epsilon^{2 / 3} k_{p}^{-5 / 3}
$$

hence the Kolmogorov (K41) spectrum within the inertial range:

$$
k_{0} \ll k \ll k_{\nu} \quad E(k)=C \epsilon^{2 / 3} k^{-5 / 3}
$$

- enstrophy spectrum $\Omega(k)$ in the inertial range

$$
\Omega(k)=k^{2} E(k)=C \epsilon^{2 / 3} k^{1 / 3}
$$

H. Politano (UNS)

MHD approximation

- Crucial role of the magnetic field in geophysical and astrophysical fluid dynamics (stellar or solar wind, convective zone of stars, accretion discs, magnetic field generation by dynamo effect, ...) leads to explore properties of MHD, namely the interaction between an electrically conducting fluid and a magnetic field

MHD approximation

- Crucial role of the magnetic field in geophysical and astrophysical fluid dynamics (stellar or solar wind, convective zone of stars, accretion discs, magnetic field generation by dynamo effect, ...) leads to explore properties of MHD, namely the interaction between an electrically conducting fluid and a magnetic field
- MHD is a fluid approximation: does not describe the detailed processes of plasma physics which require description of individual motions of particles

MHD approximation

- Crucial role of the magnetic field in geophysical and astrophysical fluid dynamics (stellar or solar wind, convective zone of stars, accretion discs, magnetic field generation by dynamo effect, ...) leads to explore properties of MHD, namely the interaction between an electrically conducting fluid and a magnetic field
- MHD is a fluid approximation: does not describe the detailed processes of plasma physics which require description of individual motions of particles
- MHD approximation for some plasmas and liquid metals * quasi-neutral property $(\nabla \cdot \mathbf{E} \simeq 0$, with \mathbf{E} the electric field)
* fluid approximation: electrical conduction of the medium by electrons alone * non relastivistic limit (typical velocity $U \ll c$)
* collisional plasma/fluid: conductivity is independent of U (time evolution of the fluid \gg time between 2 collisions ions/electrons, fluid elements contain many ions \& electons)
* trajectories of electrons are not changed under the magnetic field \mathbf{B} action

MHD equations

- Maxwell's equations

Faraday's law $\nabla \times \mathbf{E}+\partial \boldsymbol{B} / \partial t=0$
Ampère's law $\nabla \times \boldsymbol{B}=\mu_{0}\left[\boldsymbol{j}+\epsilon_{0} \partial \mathbf{E} / \partial t\right]$
Coulomb's gauge $\nabla \cdot \boldsymbol{B}=0$ where $\boldsymbol{j} \equiv$ current density, $\mu_{0} \equiv$ magnetic permeability of free space, $\epsilon_{0} \equiv$ permittivity of free space, and displacement current is neglected

MHD equations

- Maxwell's equations

Faraday's law $\nabla \times \mathbf{E}+\partial \boldsymbol{B} / \partial t=0$
Ampère's law $\nabla \times \boldsymbol{B}=\mu_{0}\left[\boldsymbol{j}+\epsilon_{0} \partial \mathbf{E} / \partial t\right]$
Coulomb's gauge $\nabla \cdot \boldsymbol{B}=0$ where $\boldsymbol{j} \equiv$ current density, $\mu_{0} \equiv$ magnetic permeability of free space, $\epsilon_{0} \equiv$ permittivity of free space, and displacement current is neglected

- add Ohm's law $\boldsymbol{j}=\sigma(\mathbf{E}+\boldsymbol{u} \times \boldsymbol{B})$
where $\sigma \equiv$ electrical conductivity of the medium
H. Politano (UNS)

MHD equations

- Maxwell's equations

Faraday's law $\nabla \times \mathbf{E}+\partial \boldsymbol{B} / \partial t=0$
Ampère's law $\nabla \times \boldsymbol{B}=\mu_{0}\left[\boldsymbol{j}+\epsilon_{0} \partial \mathbf{E} / \partial t\right]$
Coulomb's gauge $\nabla \cdot \boldsymbol{B}=0$
where $\boldsymbol{j} \equiv$ current density, $\mu_{0} \equiv$ magnetic permeability of free space, $\epsilon_{0} \equiv$ permittivity of free space, and displacement current is neglected

- add Ohm's law $\boldsymbol{j}=\sigma(\mathbf{E}+\boldsymbol{u} \times \boldsymbol{B})$ where $\sigma \equiv$ electrical conductivity of the medium
- equations combine to yield an evolution equation for the magnetic field or the so-called induction equation

$$
\partial \boldsymbol{B} / \partial t=\nabla \times(\boldsymbol{u} \times \boldsymbol{B})+\eta \Delta \boldsymbol{B}
$$

where $\eta=\left(\mu_{0} \sigma\right)^{-1}$ is the magnetic resistivity of the medium

MHD equations

- Maxwell's equations

Faraday's law $\nabla \times \mathbf{E}+\partial \boldsymbol{B} / \partial t=0$
Ampère's law $\nabla \times \boldsymbol{B}=\mu_{0}\left[\boldsymbol{j}+\epsilon_{0} \partial \mathbf{E} / \partial t\right]$
Coulomb's gauge $\nabla \cdot \boldsymbol{B}=0$
where $\boldsymbol{j} \equiv$ current density, $\mu_{0} \equiv$ magnetic permeability of free space, $\epsilon_{0} \equiv$ permittivity of free space, and displacement current is neglected

- add Ohm's law $\boldsymbol{j}=\sigma(\mathbf{E}+\boldsymbol{u} \times \boldsymbol{B})$ where $\sigma \equiv$ electrical conductivity of the medium
- equations combine to yield an evolution equation for the magnetic field or the so-called induction equation

$$
\partial \boldsymbol{B} / \partial t=\nabla \times(\boldsymbol{u} \times \boldsymbol{B})+\eta \Delta \boldsymbol{B}
$$

where $\eta=\left(\mu_{0} \sigma\right)^{-1}$ is the magnetic resistivity of the medium

- note that $\nabla \times(\boldsymbol{u} \times \boldsymbol{B})=-(\boldsymbol{u} \cdot \nabla) \boldsymbol{B}+(\boldsymbol{B} \cdot \nabla) \boldsymbol{u}$ represents both advection and stretching of the field \boldsymbol{B} (with $\nabla \cdot \boldsymbol{u}=0=\nabla \cdot \boldsymbol{B}$)
H. Politano (UNS)

HD \& MHD Turbulence

- Incompressible MHD equations

$$
\begin{aligned}
\partial \boldsymbol{u} / \partial t+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} & =-\nabla p / \rho+\nu \Delta \boldsymbol{u}+(\boldsymbol{j} \times \boldsymbol{B}) / \rho+\mathbf{F} \\
\partial \boldsymbol{B} / \partial t+(\boldsymbol{u} \cdot \nabla) \boldsymbol{B} & =(\boldsymbol{B} \cdot \nabla) \boldsymbol{u}+\eta \Delta \boldsymbol{B} \\
\nabla \cdot \boldsymbol{u} & =0=\nabla \cdot \boldsymbol{B} \quad \text { and } \quad \text { B.C. }
\end{aligned}
$$

where $\boldsymbol{j} \times \boldsymbol{B}=(\nabla \times \boldsymbol{B}) \times \boldsymbol{B} / \mu_{0}$ is the Lorentz force and \mathbf{F} a body force (friction, gravity, Coriolis force,..). \boldsymbol{B} can be replaced by the scaled magnetic field $\boldsymbol{b}=\boldsymbol{B} /\left(\rho \mu_{0}\right)^{1 / 2}=\boldsymbol{v}_{\boldsymbol{a}}$ which has dimension of a velocity and is called the Alfvén velocity although \boldsymbol{B} is a pseudovector

- Incompressible MHD equations

$$
\begin{aligned}
\partial \boldsymbol{u} / \partial t+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} & =-\nabla p / \rho+\nu \Delta \boldsymbol{u}+(\boldsymbol{j} \times \boldsymbol{B}) / \rho+\mathbf{F} \\
\partial \boldsymbol{B} / \partial t+(\boldsymbol{u} \cdot \nabla) \boldsymbol{B} & =(\boldsymbol{B} \cdot \nabla) \boldsymbol{u}+\eta \Delta \boldsymbol{B} \\
\nabla \cdot \boldsymbol{u} & =0=\nabla \cdot \boldsymbol{B} \quad \text { and } \quad \text { B.C. }
\end{aligned}
$$

where $\boldsymbol{j} \times \boldsymbol{B}=(\nabla \times \boldsymbol{B}) \times \boldsymbol{B} / \mu_{0}$ is the Lorentz force and \mathbf{F} a body force (friction, gravity, Coriolis force,..). \boldsymbol{B} can be replaced by the scaled magnetic field $\boldsymbol{b}=\boldsymbol{B} /\left(\rho \mu_{0}\right)^{1 / 2}=\boldsymbol{v}_{\boldsymbol{a}}$ which has dimension of a velocity and is called the Alfvén velocity although \boldsymbol{B} is a pseudovector

- dimensionless parameters
* magnetic Reynolds number $=$ induction $/$ diffusion $=R_{M}=U L_{0} / \eta$ * magnetic Prandtl numer $P_{M}=\nu / \eta=R_{M} / R e, P_{M} \ll 1$ ($P_{M} \sim 10^{-7}-10^{-2}$, protostellar disk, sun, and liquid sodium experiments $\left.P_{M} \sim 10^{-6}\right)$ or $P_{M} \gg 1\left(P_{M} \sim 10^{14}-10^{19}\right.$ as in solar wind, protogalaxies, interstellar medium..)
- MHD equations in Elsässer variables

The velocity \boldsymbol{u} and magnetic field \boldsymbol{b} can be combined into the Elsässer fields $\boldsymbol{z}^{ \pm}=\boldsymbol{u} \pm \boldsymbol{b}$, to obtain more symmetric equations

$$
\left(\partial_{t}+z^{\mp} \cdot \nabla\right) z^{ \pm}=\nu_{1} \Delta z^{ \pm}+\nu_{2} \Delta \boldsymbol{z}^{\mp}-\nabla P_{*}+\boldsymbol{f}^{ \pm}
$$

where $\nabla \cdot \boldsymbol{z}^{ \pm}=0, P_{*}=\left(p / \rho+\boldsymbol{b}^{2} / 2\right)$ is the total pressure, and $\nu_{1}=\frac{1}{2}(\nu+\eta), \nu_{2}=\frac{1}{2}(\nu-\eta)$

Ideal invariants in homogeneous MHD turbulence

- $\partial_{t} E^{T}=-\nu<\omega^{2}>-\eta<j^{2}>$, for $\nu=\eta=0 \rightarrow$ total energy (kinetic + magnetic) is a conserved quantity

Ideal invariants in homogeneous MHD turbulence

- $\partial_{t} E^{T}=-\nu<\boldsymbol{\omega}^{2}>-\eta<\boldsymbol{j}^{2}>$, for $\nu=\eta=0 \rightarrow$ total energy (kinetic + magnetic) is a conserved quantity
- $\partial_{t} H^{c}=\partial_{t}<\boldsymbol{u} \cdot \boldsymbol{b}>=-(\nu+\eta)<\boldsymbol{\omega} \cdot \boldsymbol{j}>$, for $\nu=\eta=0 \rightarrow$ cross helicity H^{c} is conserved.
H^{c} tells the degree of linkage of a thin isolated flux tube and a thin isolated vortex tube in same region of space (if $H^{c}=0$ no linkage)

Ideal invariants in homogeneous MHD turbulence

- $\partial_{t} E^{T}=-\nu<\boldsymbol{\omega}^{2}>-\eta<\boldsymbol{j}^{2}>$, for $\nu=\eta=0 \rightarrow$ total energy (kinetic + magnetic) is a conserved quantity
- $\partial_{t} H^{c}=\partial_{t}<\boldsymbol{u} \cdot \boldsymbol{b}>=-(\nu+\eta)<\boldsymbol{\omega} \cdot \boldsymbol{j}>$, for $\nu=\eta=0 \rightarrow$ cross helicity H^{c} is conserved.
H^{c} tells the degree of linkage of a thin isolated flux tube and a thin isolated vortex tube in same region of space (if $H^{c}=0$ no linkage)
- $\partial_{t} \boldsymbol{H}^{b}=\partial_{t}<\boldsymbol{a} \cdot \boldsymbol{b}>=-2 \eta<\boldsymbol{b} \cdot \boldsymbol{j}>$ (with $\boldsymbol{a} \equiv$ magnetic potential $\nabla \times \boldsymbol{a}=\boldsymbol{b})$, for $\eta=0 \rightarrow$ magnetic helicity H^{b} is conserved. H^{b} is a measure of the degree of linkage of 2 thin isolated magnetic flux tubes (if $H^{b}=0$ no linkage)

Ideal invariants in homogeneous MHD turbulence

- $\partial_{t} E^{T}=-\nu<\boldsymbol{\omega}^{2}>-\eta<\boldsymbol{j}^{2}>$, for $\nu=\eta=0 \rightarrow$ total energy (kinetic + magnetic) is a conserved quantity
- $\partial_{t} H^{c}=\partial_{t}<\boldsymbol{u} \cdot \boldsymbol{b}>=-(\nu+\eta)<\boldsymbol{\omega} \cdot \boldsymbol{j}>$, for $\nu=\eta=0 \rightarrow$ cross helicity H^{c} is conserved.
H^{c} tells the degree of linkage of a thin isolated flux tube and a thin isolated vortex tube in same region of space (if $H^{c}=0$ no linkage)
- $\partial_{t} \boldsymbol{H}^{b}=\partial_{t}<\boldsymbol{a} \cdot \boldsymbol{b}>=-2 \eta<\boldsymbol{b} \cdot \boldsymbol{j}>$ (with $\boldsymbol{a} \equiv$ magnetic potential $\nabla \times \boldsymbol{a}=\boldsymbol{b})$, for $\eta=0 \rightarrow$ magnetic helicity H^{b} is conserved. H^{b} is a measure of the degree of linkage of 2 thin isolated magnetic flux tubes (if $H^{b}=0$ no linkage)
- $\partial_{t} E^{+}=-\nu_{1}<\left(\boldsymbol{\omega}^{+}\right)^{2}>-\nu_{2}<\boldsymbol{\omega}^{+} \cdot \boldsymbol{\omega}^{-}>$ $\partial_{t} E^{-}=-\nu_{1}<\left(\boldsymbol{\omega}^{-}\right)^{2}>-\nu_{2}<\boldsymbol{\omega}^{-} \cdot \boldsymbol{\omega}^{+}>$
for $\nu=\eta=0=\nu_{1}=\nu_{2} \rightarrow$ energy of the z^{+}and the z^{-}fields are conserved

Ideal invariants in homogeneous MHD turbulence

- $\partial_{t} E^{T}=-\nu<\boldsymbol{\omega}^{2}>-\eta<\boldsymbol{j}^{2}>$, for $\nu=\eta=0 \rightarrow$ total energy (kinetic + magnetic) is a conserved quantity
- $\partial_{t} H^{c}=\partial_{t}<\boldsymbol{u} \cdot \boldsymbol{b}>=-(\nu+\eta)<\boldsymbol{\omega} \cdot \boldsymbol{j}>$, for $\nu=\eta=0 \rightarrow$ cross helicity H^{c} is conserved.
H^{c} tells the degree of linkage of a thin isolated flux tube and a thin isolated vortex tube in same region of space (if $H^{c}=0$ no linkage)
- $\partial_{t} \boldsymbol{H}^{b}=\partial_{t}<\boldsymbol{a} \cdot \boldsymbol{b}>=-2 \eta<\boldsymbol{b} \cdot \boldsymbol{j}>$ (with $\boldsymbol{a} \equiv$ magnetic potential $\nabla \times \boldsymbol{a}=\boldsymbol{b})$, for $\eta=0 \rightarrow$ magnetic helicity H^{b} is conserved. H^{b} is a measure of the degree of linkage of 2 thin isolated magnetic flux tubes (if $H^{b}=0$ no linkage)
- $\partial_{t} E^{+}=-\nu_{1}<\left(\boldsymbol{\omega}^{+}\right)^{2}>-\nu_{2}<\boldsymbol{\omega}^{+} \cdot \boldsymbol{\omega}^{-}>$
$\partial_{t} E^{-}=-\nu_{1}<\left(\boldsymbol{\omega}^{-}\right)^{2}>-\nu_{2}<\boldsymbol{\omega}^{-} \cdot \boldsymbol{\omega}^{+}>$
for $\nu=\eta=0=\nu_{1}=\nu_{2} \rightarrow$ energy of the z^{+}and the z^{-}fields are conserved
- note that: 1) helicities are pseudo-scalars, 2) in an ideal fluid, the mutual topologies of tubes are conserved

Alfvén waves

- Linearization of incompressible MHD eqs around a uniform magnetic field \boldsymbol{b}_{0} with $\rho_{0}=c s t, p_{0}=c s t, \boldsymbol{u}_{0}=0$ (ν and η neglected) leads to:

$$
\begin{aligned}
& \partial_{t} \boldsymbol{z}^{+}-\left(\boldsymbol{b}_{0} \cdot \nabla\right) \boldsymbol{z}^{+}=0 \\
& \partial_{t} \boldsymbol{z}^{-}+\left(\boldsymbol{b}_{0} \cdot \nabla\right) \boldsymbol{z}^{-}=0
\end{aligned}
$$

Looking for a solution of plane-wave type for perturbations

$$
z^{ \pm}=z_{k}{ }^{ \pm} \mathrm{e}^{i\left(\boldsymbol{k} \cdot \boldsymbol{x}-\bar{\omega}^{ \pm} t\right)}
$$

gives: $\bar{\omega}^{+}=-\left(\boldsymbol{b}_{0} \cdot \boldsymbol{k}\right) \& \bar{\omega}^{-}=+\left(\boldsymbol{b}_{0} \cdot \boldsymbol{k}\right)$ with $\boldsymbol{k} \cdot \boldsymbol{z}_{\boldsymbol{k}}^{+}=0$ \& $\boldsymbol{k} \cdot \boldsymbol{z}_{\boldsymbol{k}}^{-}=0$ (incompressibility).

Alfvén waves

- Linearization of incompressible MHD eqs around a uniform magnetic field \boldsymbol{b}_{0} with $\rho_{0}=c s t, p_{0}=c s t, \boldsymbol{u}_{0}=0$ (ν and η neglected) leads to:

$$
\begin{aligned}
& \partial_{t} \boldsymbol{z}^{+}-\left(\boldsymbol{b}_{0} \cdot \nabla\right) \boldsymbol{z}^{+}=0 \\
& \partial_{t} \boldsymbol{z}^{-}+\left(\boldsymbol{b}_{0} \cdot \nabla\right) \boldsymbol{z}^{-}=0
\end{aligned}
$$

Looking for a solution of plane-wave type for perturbations

$$
\boldsymbol{z}^{ \pm}=\boldsymbol{z}_{\boldsymbol{k}} \mathrm{A}^{i\left(\boldsymbol{k} \cdot \boldsymbol{x}-\bar{\omega}^{ \pm} t\right)}
$$

gives: $\bar{\omega}^{+}=-\left(\boldsymbol{b}_{0} \cdot \boldsymbol{k}\right) \& \bar{\omega}^{-}=+\left(\boldsymbol{b}_{0} \cdot \boldsymbol{k}\right)$ with $\boldsymbol{k} \cdot \boldsymbol{z}_{k}^{+}=0$ \& $\boldsymbol{k} \cdot \boldsymbol{z}_{\boldsymbol{k}}^{-}=0$ (incompressibility).

- z^{+}and z^{-}are the so-called Alfvén waves: transverse waves $\left(z_{k}^{ \pm} \perp \boldsymbol{k}\right)$ with group velocity $v_{g}= \pm b_{0}$ and phase velocity $v_{\phi}= \pm b_{0} k_{\|} / k$ (semi-dispersives waves), where $k_{\|}$is the component of $\boldsymbol{k} \| \boldsymbol{b}_{0}$.

Alfvén waves

- Linearization of incompressible MHD eqs around a uniform magnetic field \boldsymbol{b}_{0} with $\rho_{0}=c s t, p_{0}=c s t, \boldsymbol{u}_{0}=0$ (ν and η neglected) leads to:

$$
\begin{aligned}
& \partial_{t} \boldsymbol{z}^{+}-\left(\boldsymbol{b}_{0} \cdot \nabla\right) \boldsymbol{z}^{+}=0 \\
& \partial_{t} \boldsymbol{z}^{-}+\left(\boldsymbol{b}_{0} \cdot \nabla\right) \boldsymbol{z}^{-}=0
\end{aligned}
$$

Looking for a solution of plane-wave type for perturbations

$$
z^{ \pm}=z_{k}{ }^{ \pm} \mathrm{e}^{i\left(\boldsymbol{k} \cdot \boldsymbol{x}-\bar{\omega}^{ \pm} t\right)}
$$

gives: $\bar{\omega}^{+}=-\left(\boldsymbol{b}_{0} \cdot \boldsymbol{k}\right) \& \bar{\omega}^{-}=+\left(\boldsymbol{b}_{0} \cdot \boldsymbol{k}\right)$ with $\boldsymbol{k} \cdot \boldsymbol{z}_{\boldsymbol{k}}^{+}=0$ \& $\boldsymbol{k} \cdot \boldsymbol{z}_{\boldsymbol{k}}^{-}=0$ (incompressibility).

- z^{+}and z^{-}are the so-called Alfvén waves: transverse waves $\left(z_{k}^{ \pm} \perp \boldsymbol{k}\right)$ with group velocity $v_{g}= \pm b_{0}$ and phase velocity $v_{\phi}= \pm b_{0} k_{\|} / k$ (semi-dispersives waves), where $k_{\|}$is the component of $\boldsymbol{k} \| \boldsymbol{b}_{0}$.
- oppositely travelling waves: \boldsymbol{z}^{-}travels in the \boldsymbol{b}_{0}-direction while \boldsymbol{z}^{+}is backward travelling, with group velocity \boldsymbol{b}_{0}, the so-called Alfvén velocity denoted $\boldsymbol{v}_{\boldsymbol{a}}$
H. Politano (UNS)

HD \& MHD Turbulence

* A uniform magnetic field \boldsymbol{b}_{0} (or a local one at scale larger than a given ℓ in the inertial range, or at large scale) has a significant dynamical effect for energy transfers : z^{+}and z^{-}blob disturbances (wavepackets) only interact when they collide \longrightarrow weakening of the transfer of energy between scales (i.e. weak nonlinearity)
* Multiple collisions are needed to pass energy in the blobs to smaller scales * This is the basic idea of "IK" phenomenology (Iroshnikov 63, Kraichnan 65): interplay between turbulent eddies and Alfvén waves travelling along a mean field \longrightarrow crucial difference between hydrodynamic and conducting fluids
* Does Kolmogorov's approach still work ? Does it need to be modified ? Alfvén waves and correlation between \boldsymbol{u} and \boldsymbol{b} fields (cross helicity) are crucial and lead to a lack of universality for inertial MHD spectra

Phenomenologies

Let's take $P_{M} \sim 1$ from now on.
Suppose $|\boldsymbol{b}| \ll\left|\boldsymbol{b}_{0}\right|$, the IK phenomenology is based on weak nonlinear interactions and many collisions, say N, between z^{+}and z^{-}wavepackets of similar size ℓ, are needed to pass energy to smaller scales. For simplicity, ignore anisotropy ($\ell_{\|} \sim \ell_{\perp} \sim \ell$) and suppose zero cross helicity $H^{C} \sim 0$ $\left(z_{\ell}^{+} \sim z_{\ell}^{-} \sim z_{\ell}\right)$. Disturbances are sheared by an amount

$$
\delta z_{\ell} \sim\left(z_{\ell} z_{\ell} / \ell\right)\left(\ell / b_{0}\right) \longrightarrow \delta z_{\ell} / z_{\ell} \sim z_{\ell} / b_{0}
$$

- $t_{a} \sim \ell / b_{0} \equiv \ell / v_{a}$ is the interaction time for one collision (Alfvén time) at scale ℓ, i.e. characteristic time for propagation over a distance ℓ

Phenomenologies

Let's take $P_{M} \sim 1$ from now on.
Suppose $|\boldsymbol{b}| \ll\left|\boldsymbol{b}_{0}\right|$, the IK phenomenology is based on weak nonlinear interactions and many collisions, say N, between z^{+}and z^{-}wavepackets of similar size ℓ, are needed to pass energy to smaller scales. For simplicity, ignore anisotropy ($\ell_{\|} \sim \ell_{\perp} \sim \ell$) and suppose zero cross helicity $H^{C} \sim 0$ $\left(z_{\ell}^{+} \sim z_{\ell}^{-} \sim z_{\ell}\right)$. Disturbances are sheared by an amount

$$
\delta z_{\ell} \sim\left(z_{\ell} z_{\ell} / \ell\right)\left(\ell / b_{0}\right) \longrightarrow \delta z_{\ell} / z_{\ell} \sim z_{\ell} / b_{0}
$$

- $t_{a} \sim \ell / b_{0} \equiv \ell / v_{a}$ is the interaction time for one collision (Alfvén time) at scale ℓ, i.e. characteristic time for propagation over a distance ℓ
- N expected number of accumulated random collisions

$$
\sum_{N} \delta z_{\ell} \sim \sqrt{N} \delta z_{\ell} \sim z_{\ell} \longrightarrow N \sim\left(z_{\ell} / \delta z_{\ell}\right)^{2} \rightarrow N \sim\left(b_{0} / z_{\ell}\right)^{2}
$$

Phenomenologies

Let's take $P_{M} \sim 1$ from now on.
Suppose $|\boldsymbol{b}| \ll\left|\boldsymbol{b}_{0}\right|$, the IK phenomenology is based on weak nonlinear interactions and many collisions, say N, between z^{+}and z^{-}wavepackets of similar size ℓ, are needed to pass energy to smaller scales. For simplicity, ignore anisotropy ($\ell_{\|} \sim \ell_{\perp} \sim \ell$) and suppose zero cross helicity $H^{C} \sim 0$ $\left(z_{\ell}^{+} \sim z_{\ell}^{-} \sim z_{\ell}\right)$. Disturbances are sheared by an amount

$$
\delta z_{\ell} \sim\left(z_{\ell} z_{\ell} / \ell\right)\left(\ell / b_{0}\right) \longrightarrow \delta z_{\ell} / z_{\ell} \sim z_{\ell} / b_{0}
$$

- $t_{a} \sim \ell / b_{0} \equiv \ell / v_{a}$ is the interaction time for one collision (Alfvén time) at scale ℓ, i.e. characteristic time for propagation over a distance ℓ
- N expected number of accumulated random collisions $\sum_{N} \delta z_{\ell} \sim \sqrt{N} \delta z_{\ell} \sim z_{\ell} \longrightarrow N \sim\left(z_{\ell} / \delta z_{\ell}\right)^{2} \rightarrow N \sim\left(b_{0} / z_{\ell}\right)^{2}$
- gives the energy transfer time at scale $\ell ; t_{t r} \sim N\left(\ell / v_{a}\right) \sim t_{\ell}^{2} / t_{a}$

Phenomenologies

Let's take $P_{M} \sim 1$ from now on.
Suppose $|\boldsymbol{b}| \ll\left|\boldsymbol{b}_{0}\right|$, the IK phenomenology is based on weak nonlinear interactions and many collisions, say N, between z^{+}and z^{-}wavepackets of similar size ℓ, are needed to pass energy to smaller scales. For simplicity, ignore anisotropy ($\ell_{\|} \sim \ell_{\perp} \sim \ell$) and suppose zero cross helicity $H^{C} \sim 0$ $\left(z_{\ell}^{+} \sim z_{\ell}^{-} \sim z_{\ell}\right)$. Disturbances are sheared by an amount

$$
\delta z_{\ell} \sim\left(z_{\ell} z_{\ell} / \ell\right)\left(\ell / b_{0}\right) \longrightarrow \delta z_{\ell} / z_{\ell} \sim z_{\ell} / b_{0}
$$

- $t_{a} \sim \ell / b_{0} \equiv \ell / v_{a}$ is the interaction time for one collision (Alfvén time) at scale ℓ, i.e. characteristic time for propagation over a distance ℓ
- N expected number of accumulated random collisions

$$
\sum_{N} \delta z_{\ell} \sim \sqrt{N} \delta z_{\ell} \sim z_{\ell} \longrightarrow N \sim\left(z_{\ell} / \delta z_{\ell}\right)^{2} \rightarrow N \sim\left(b_{0} / z_{\ell}\right)^{2}
$$

- gives the energy transfer time at scale $\ell ; t_{t r} \sim N\left(\ell / v_{a}\right) \sim t_{\ell}^{2} / t_{a}$
- where t_{ℓ} is the advection time at scale $\ell ; t_{\ell} \sim \ell / z_{\ell}$

Isotropic descriptions

- uncorrelated case $<\boldsymbol{u} \cdot \boldsymbol{b}>\sim<\left(z^{+}\right)^{2}-\left(z^{-}\right)^{2}>\sim 0, z_{\ell}^{+} \sim z_{\ell}^{-} \sim z_{\ell}$
* K41, $b_{0} \sim 0$
$t_{t r}^{+} \sim t_{t r}^{-} \sim t_{\ell} \sim \ell / z_{\ell} \longrightarrow \epsilon_{\ell} \sim \epsilon \sim z_{\ell}{ }^{3} / \ell$ within inertial range
$K_{\ell}^{ \pm} \sim z_{\ell}{ }^{2} \sim k E(k), \epsilon_{\ell} \sim[k E(k)]^{3 / 2} k \sim \epsilon \quad E(k) \sim \epsilon^{2 / 3} k^{-5 / 3}$
* dissipation scale $t_{t r} \sim t_{\nu} \sim \ell^{2} / \nu \rightarrow \ell_{\nu} \sim\left(\nu^{3} / \epsilon\right)^{1 / 4}\left(P_{M} \sim 1\right)$
*IK $b_{0} \gg u_{\ell} \sim b_{\ell}, t_{a} \ll t_{\ell}$
$t_{t r}^{+} \sim t_{t r}^{-} \sim t_{t r} \sim t_{\ell}^{2} / t_{a} \sim \ell b_{0} / z_{\ell}^{2} \rightarrow \epsilon_{\ell}^{+} \sim \epsilon_{\ell}^{-} \sim \epsilon_{\ell} \sim \epsilon \sim z_{\ell}^{4} / \ell b_{0}$
$K_{\ell}^{ \pm} \sim z_{\ell}^{2} \sim k E(k), \epsilon_{\ell} \sim[k E(k)]^{4 / 2} k \sim \epsilon \quad E(k) \sim\left(b_{0} \epsilon\right)^{1 / 2} k^{-3 / 2}$
* dissipation scale $t_{\text {tr }} \sim t_{\nu} \sim \ell^{2} / \nu \rightarrow \ell_{\nu} \sim\left(\nu^{2} b_{0} / \epsilon\right)^{1 / 3}\left(P_{M} \sim 1\right)$

Isotropic descriptions

- uncorrelated case $<\boldsymbol{u} \cdot \boldsymbol{b}>\sim<\left(z^{+}\right)^{2}-\left(z^{-}\right)^{2}>\sim 0, z_{\ell}^{+} \sim z_{\ell}^{-} \sim z_{\ell}$
* K41, $b_{0} \sim 0$
$t_{t r}^{+} \sim t_{t r}^{-} \sim t_{\ell} \sim \ell / z_{\ell} \longrightarrow \epsilon_{\ell} \sim \epsilon \sim z_{\ell}^{3} / \ell$ within inertial range
$K_{\ell}^{ \pm} \sim z_{\ell}^{2} \sim k E(k), \epsilon_{\ell} \sim[k E(k)]^{3 / 2} k \sim \epsilon \quad E(k) \sim \epsilon^{2 / 3} k^{-5 / 3}$
* dissipation scale $t_{t r} \sim t_{\nu} \sim \ell^{2} / \nu \rightarrow \ell_{\nu} \sim\left(\nu^{3} / \epsilon\right)^{1 / 4}\left(P_{M} \sim 1\right)$
* IK $b_{0} \gg u_{\ell} \sim b_{\ell}, t_{a} \ll t_{\ell}$
$t_{t r}^{+} \sim t_{t r}^{-} \sim t_{t r} \sim t_{\ell}^{2} / t_{a} \sim \ell b_{0} / z_{\ell}^{2} \rightarrow \epsilon_{\ell}^{+} \sim \epsilon_{\ell}^{-} \sim \epsilon_{\ell} \sim \epsilon \sim z_{\ell}^{4} / \ell b_{0}$
$K_{\ell}^{ \pm} \sim z_{\ell}^{2} \sim k E(k), \epsilon_{\ell} \sim[k E(k)]^{4 / 2} k \sim \epsilon \quad E(k) \sim\left(b_{0} \epsilon\right)^{1 / 2} k^{-3 / 2}$
* dissipation scale $t_{t r} \sim t_{\nu} \sim \ell^{2} / \nu \rightarrow \ell_{\nu} \sim\left(\nu^{2} b_{0} / \epsilon\right)^{1 / 3}\left(P_{M} \sim 1\right)$
- correlated case $<\boldsymbol{u} \cdot \boldsymbol{b}>\sim<\left(z^{+}\right)^{2}-\left(z^{-}\right)^{2}>\nsim 0, z_{\ell}^{+} \nsim z_{\ell}^{-}$
* IK $t_{a} \ll t_{\ell}^{ \pm} t_{\ell}^{+} \sim \ell / z_{\ell}^{-}, t_{\ell}^{-} \sim \ell / z_{\ell}^{+}$
$t_{t r}^{+} \sim t_{\ell}^{+2} / t_{a} \sim \ell b_{0} / z_{\ell}^{-2} \rightarrow \epsilon_{\ell}^{+} \sim z_{\ell}^{+2} / t_{t r}^{+} \sim z_{\ell}^{+2} z_{\ell}^{-2} / \ell b_{0}$
$t_{t r}^{-} \sim t_{\ell}^{-2} / t_{a} \sim \ell b_{0} / z_{\ell}^{+2} \rightarrow \epsilon_{\ell}^{-} \sim z_{\ell}^{-2} / t_{t r}^{-} \sim z_{\ell}^{-2} z_{\ell}^{+2} / \ell b_{0}$
H. Politano (UNS)
$26^{\text {th }}$ July - $5^{\text {th }}$ August 2016
HD \& MHD Turbulence
$K_{\ell}^{+} \sim z_{\ell}^{+2} \sim k E^{+}(k) \rightarrow z_{\ell}^{+} \sim \sqrt{k E^{+}(k)}$,
$K_{\ell}^{-} \sim z_{\ell}^{-2} \sim k E^{-}(k) \rightarrow z_{\ell}^{-} \sim \sqrt{k E^{-}(k)}$
within the inertial range $k_{0} \ll k \ll k_{\nu}$
$\epsilon_{\boldsymbol{\ell}}^{+} \sim \epsilon_{\boldsymbol{\ell}}^{-} \sim \epsilon \sim\left[k E^{+}(k)\right]\left[k E^{-}(k)\right] k / b_{0}$
$E^{+}(k) E^{-}(k) \sim\left(b_{0} \epsilon\right) k^{-3}$
suppose that $E^{+}(k) \sim k^{-m^{+}}$and $E^{-}(k) \sim k^{-m^{-}} \longrightarrow \quad m^{+}+m^{-}=3$
* dissipation scales ($P_{M} \sim 1$)
$t_{t r}^{+} \sim t_{\nu}^{+} \sim \ell^{+2} / \nu \rightarrow \ell_{\nu}^{+} \sim \nu b_{0} / z_{\ell_{\nu}^{+}}^{-2}, t_{t r}^{-} \sim t_{\nu}^{-} \sim \ell^{-2} / \nu \rightarrow \ell_{\nu}^{-} \sim \nu b_{0} / z_{\ell_{\nu}^{-}}{ }^{2}$
it can be showned that $k_{\nu}^{+} \sim k_{\nu}^{-}$which leads to $k_{\nu} \sim\left(\epsilon / b_{0} \nu^{2}\right)^{1 / 3} \sim 1 / \ell_{\nu}$
* K41 $b_{0} \sim 0$, a similar analysis
$t_{t r}^{+} \sim t_{\ell}^{+}, t_{t r}^{-} \sim t_{\ell}^{-}$and $\epsilon_{\ell}^{+} \sim \epsilon_{\ell}^{-} \sim \epsilon$ leads to $m^{+}=m^{-}=5 / 3$
* with dissipation wave number $k_{\nu} \sim\left(\epsilon / \nu^{3}\right)^{1 / 4}$

Anisotropic descriptions

Here, let's write $\boldsymbol{B}=\boldsymbol{B}_{0}+\boldsymbol{b}$, where \boldsymbol{B}_{0} is an ambient magnetic field.
It is possible to take into account anisotropy within weak turbulence theory (weak nonlinearity) using resonant triad waves interactions ${ }^{1}$ theory; waves satisfy conditions:
$\boldsymbol{k}^{(1)}+\boldsymbol{k}^{(2)}=\boldsymbol{k}^{(3)}, \bar{\omega}^{(1)}+\bar{\omega}^{(2)} \approx \bar{\omega}^{(3)}$, with dispersion relationship $\bar{\omega}= \pm v_{a} k_{\|}$ As only oppositely travelling waves interact, the 3 waves must satisfy
$k_{\|}^{(1)}+k_{\|}^{(2)}=k_{\|}^{(3)}$ and $v_{a} k_{\|}^{(1)}-v_{a} k_{\|}^{(2)} \approx \pm v_{a} k_{\|}^{(3)}$,
the only possibilities are
$k_{\|}^{(1)} \approx k_{\|}^{(3)}, \quad k_{\|}^{(2)} \approx 0, \quad \bar{\omega}^{(2)} \approx 0$
$k_{\|}^{(2)} \approx k_{\|}^{(3)}, \quad k_{\|}^{(1)} \approx 0, \quad \bar{\omega}^{(1)} \approx 0$

- modes $k_{\|} \approx 0, \bar{\omega} \approx 0$ are not really waves but rather quasi-2D fluctuations highly elongated along \boldsymbol{B}_{0}
- wave (1), for ex., interacts with a quasi-static quasi-2D disturbance and the generated wave (3) has $\sim k_{\|}^{(1)}$ so negligible change in $\ell_{\| \mid}$from the collision

[^0]- For sake of simplicity, we still suppose $P_{M} \sim 1$ and zero cross helicity ($H^{c} \sim 0$), thus $z_{\ell}^{+} \sim z_{\ell}^{-} \sim z_{\ell}$
- For sake of simplicity, we still suppose $P_{M} \sim 1$ and zero cross helicity ($H^{c} \sim 0$), thus $z_{\ell}^{+} \sim z_{\ell}^{-} \sim z_{\ell}$
- IKa, $B_{0} \gg b_{r m s}$
* $t_{a} \ll t_{\ell}$
energy transfer time
$t_{t r} \sim t_{\ell}^{2} / t_{a} \sim\left(\ell_{\perp} / z_{\ell}\right)^{2} /\left(\ell_{\|} / B_{0}\right) \sim\left(k_{\|} B_{0}\right) /\left(k_{\perp}^{2} z_{\ell}^{2}\right)$
energy flux down through the inertial range
$\epsilon_{\ell}^{+} \sim \epsilon_{\ell}^{-} \sim \epsilon_{\ell} \sim \epsilon \sim z_{\ell}^{2} / t_{t r} \sim k_{\perp}^{2} z_{\ell}^{4} / k_{\| \mid} B_{0} \longrightarrow z_{\ell} \sim\left(\epsilon k_{\|} B_{0} / k_{\perp}^{2}\right)^{1 / 4}$
which leads to $\epsilon \sim k_{\perp}^{2}\left(k_{\|} k_{\perp} E\left(k_{\perp}, k_{\|}\right)^{2} /\left(k_{\|} B_{0}\right)\right.$ and

$$
E\left(k_{\perp}, k_{\|}\right) \sim\left(\epsilon B_{0}\right)^{1 / 2} k_{\|}^{-1 / 2} k_{\perp}^{-2}
$$

(Ng \& Bhattacharjee, 1997)

* $t_{a} \ll \epsilon t_{\ell}$, asymptotic analytical result within Alfvén waves turbulence theory \square
$E(k \|, k \perp) \sim C_{k} f\left(k_{\|}\right) k_{\perp}{ }^{-2}$
$\left(k_{\|} \neq 0\right)$
(Galtier et al., 2000)
(no energy transfer along \boldsymbol{B}_{0})
- K41a, $B_{0} \sim b_{r m s}$
"strong" turbulence regime, i.e. strong non-linear collisions of z^{+}and z^{-}propagating waves to pass energy to smaller scales, with the so called critical balance assumption $t_{\ell} \sim t_{a}$, i.e. equilibrium between inertial forces and Maxwell stresses (Goldreich \& Sridhar, 1995) * non-linear interaction time $=$ interaction time of 2 oppositely travelling waves (as only 1 collision is needed): $t_{a} \sim \ell_{\|} / B_{0}$ * flux of energy though inertial rang: $\epsilon_{\ell} \sim z_{\ell}^{2} / t_{a} \sim z_{\ell}^{2} / t_{\ell} \sim z_{\ell}^{3} / \ell_{\perp}$ * this yields $z_{\ell}^{2} \sim \epsilon^{2 / 3} \ell_{\perp}^{2 / 3} \rightarrow z_{\ell}^{2} \sim k_{\perp} E\left(k_{\perp}\right) \sim \epsilon^{2 / 3} k_{\perp}{ }^{-2 / 3}$ and thus $E\left(k_{\perp}\right) \sim \epsilon^{2 / 3} k_{\perp}{ }^{-5 / 3}$

Remarks:

$-\ell_{\|} \sim B_{0} \ell_{\perp} / z_{\ell} \sim\left(B_{0} / \epsilon^{1 / 3}\right) \ell_{\perp}^{2 / 3}$
$-z_{\ell}^{2} \sim \epsilon^{2 / 3} \ell_{\perp}^{2 / 3} \sim \epsilon \ell_{\|} / B_{0} \longrightarrow E\left(k_{\|}\right) \sim\left(\epsilon / B_{0}\right) k_{\|}^{-2}$

- within IK theory $\left(t_{a} \ll t_{\ell}\right)$, assuming $E\left(k_{\perp}, k_{\|}\right) \sim k_{\perp}^{-a} k_{\|}^{-b}$, it can be show that $3 a+2 b=7$, thus $a=5 / 3, b=1$ for K41a \& $a=2, b=1 / 2$ for IKa, and, if $t_{a}\left(\ell_{\|}\right) / t_{\ell}\left(\ell_{\perp}\right) \sim c s t, \ell_{\|} \sim\left(B_{0} / \epsilon_{I K a}^{1 / 3}\right) \ell_{\perp}^{2 / 3} \quad$ (Galtier et al, 2005) $\underset{26^{\text {th }} \text { July }-5^{\text {th }} \text { August 20 }}{\text { 20 }}$

von Kármán-Howarth equations

To obtain such von Kármán-Howarth (VKH) equations:

1) write the two-point (at $\boldsymbol{x} \& \boldsymbol{x}+\boldsymbol{r}$) correlations for the different components of given fields ($\left.\boldsymbol{u}, \boldsymbol{b}, \boldsymbol{z}^{ \pm}, ..\right)$, or their respective increments, namely 1st, 2nd and 3rd order correlations, reduce the associated tensors (or pseudo-tensors) using incompressibility condition, homogeneity and isotropy assumptions, finally write the tensor coefficients in terms of u_{p} longitudinal component (\| to r) and $u_{n 1}, u_{n 2}$ lateral components (\perp to r)
2) write the movement equations at two different spatial locations, x \& $\boldsymbol{x}+\boldsymbol{r}$, derive the time evolution of the two-point second order correlation of the fields ($\left.\boldsymbol{u}, \boldsymbol{b}, \boldsymbol{z}^{ \pm}, ..\right)$and, using homogeneity, obtain the equations for the tensor coefficients

- VKH eq. (1938) for homogeneous fully isotropic NS turbulence

$$
\begin{align*}
\frac{\partial}{\partial t}<u_{p}(\boldsymbol{x}) u_{p}(\boldsymbol{x}+\boldsymbol{r})> & =\frac{1}{r^{4}} \frac{\partial}{\partial r}\left[r^{4}<u_{p}^{2}(\boldsymbol{x}) u_{p}(\boldsymbol{x}+\boldsymbol{r})>\right] \\
& +2 \nu \frac{1}{r^{4}} \frac{\partial}{\partial r}\left[r^{4} \frac{\partial}{\partial r}<u_{p}(\boldsymbol{x}) u_{p}(\boldsymbol{x}+\boldsymbol{r})>\right] \tag{1}
\end{align*}
$$

a VKH eq. for helical flows (skew isotropy) can be derived (Gomez et al., 2000)

- VKH eq. (1938) for homogeneous fully isotropic NS turbulence

$$
\begin{align*}
\frac{\partial}{\partial t}<u_{p}(\boldsymbol{x}) u_{p}(\boldsymbol{x}+\boldsymbol{r})> & =\frac{1}{r^{4}} \frac{\partial}{\partial r}\left[r^{4}<u_{p}^{2}(\boldsymbol{x}) u_{p}(\boldsymbol{x}+\boldsymbol{r})>\right] \\
& +2 \nu \frac{1}{r^{4}} \frac{\partial}{\partial r}\left[r^{4} \frac{\partial}{\partial r}<u_{p}(\boldsymbol{x}) u_{p}(\boldsymbol{x}+\boldsymbol{r})>\right] \tag{1}
\end{align*}
$$

a VKH eq. for helical flows (skew isotropy) can be derived (Gomez et al., 2000)

- VKH for homogeneous isotropic MHD turbulence for sake of simplicity, let consider $P_{M}=1$ (Politano \& Pouquet, 1998)

$$
\begin{align*}
\frac{\partial}{\partial t}<z_{p}^{ \pm}(x) z_{p}^{ \pm}(x+r) & >=\frac{1}{r^{4}} \frac{\partial}{\partial r}\left[r^{4}<z_{p}^{ \pm}(x) z_{p}^{\mp}(x) z_{p}^{ \pm}(x+r)>\right] \\
& +2 \nu \frac{1}{r^{4}} \frac{\partial}{\partial r}\left[r^{4} \frac{\partial}{\partial r}<z_{p}^{ \pm}(x) z_{p}^{ \pm}(x+r)>\right] \tag{2}
\end{align*}
$$

a VKH eq. for magnetic helicity can be obtained (Politano et al. 2003)

Laws for third-order correlation of increments

- Kolmogorov "4/5" law
* consider velocity increments $\delta u_{i}(\boldsymbol{r})=u_{i}(\boldsymbol{x}+\boldsymbol{r})-u_{i}(\boldsymbol{x})$ and the 2nd order $<\delta u_{i}(\boldsymbol{r}) \delta u_{j}(\boldsymbol{r})>$ and 3 rd order $\left\langle\delta u_{i}(\boldsymbol{r}) \delta u_{j}(\boldsymbol{r}) \delta u_{k}(\boldsymbol{r})>\right.$ structure functions. Let replace them in VKH eq. (1), and use $\partial_{t} E=-\epsilon=\frac{1}{2} \partial_{t}\left\langle u_{i}(x) u_{i}(x)\right\rangle=\frac{3}{2} \partial_{t}\left\langle u_{p}^{2}(x)\right\rangle$ (by isotropy) * under hypothesis : i) $t \rightarrow \infty$ (stationary state) and ϵ is finite per unit mass (ν fixed) and ii) $\nu \rightarrow 0$ (ϵ still fixed), one obtains

$$
\left.<\left(\delta u_{p}(r)\right)^{3}\right\rangle=-\frac{4}{5} \epsilon r \quad \text { within the inertial range }
$$

Laws for third-order correlation of increments

- Kolmogorov "4/5" law
* consider velocity increments $\delta u_{i}(\boldsymbol{r})=u_{i}(\boldsymbol{x}+\boldsymbol{r})-u_{i}(\boldsymbol{x})$ and the 2 nd order $<\delta u_{i}(\boldsymbol{r}) \delta u_{j}(\boldsymbol{r})>$ and 3 rd order $<\delta u_{i}(\boldsymbol{r}) \delta u_{j}(\boldsymbol{r}) \delta u_{k}(\boldsymbol{r})>$ structure functions. Let replace them in VKH eq. (1), and use $\partial_{t} E=-\epsilon=\frac{1}{2} \partial_{t}\left\langle u_{i}(x) u_{i}(x)\right\rangle=\frac{3}{2} \partial_{t}\left\langle u_{p}^{2}(x)\right\rangle$ (by isotropy) * under hypothesis : i) $t \rightarrow \infty$ (stationary state) and ϵ is finite per unit mass (ν fixed) and ii) $\nu \rightarrow 0$ (ϵ still fixed), one obtains

$$
<\left(\delta u_{p}(r)\right)^{3}>=-\frac{4}{5} \epsilon r \quad \text { within the inertial range }
$$

- MHD "4/3" law
a similar approach for MHD VKH eq. (2) gives in the inertial range

$$
<\left(\delta z^{ \pm} \cdot \delta z^{ \pm}\right) \delta z_{p}^{\mp}(r)>=-\frac{4}{3} \epsilon^{ \pm} r
$$

(Politano \& Pouquet, 1998)

Structures fonctions and scaling exponents

Two-points statistics can be described in terms of moments of velocity increments (or "structure functions") of order p, for $\ell \ll \ell_{0}$, namely

$$
\delta v_{\ell}^{p} \equiv<[u(x+\ell)-u(x)]^{p}>
$$

where, here, u is the field component, say velocity, in the direction of the separation vector $\ell=(\ell, 0,0)$ (longitudinal component).
Suppose a scaling law within the inertial range $\ell_{\nu} \ll \ell \ll \ell_{0} ; \delta v_{\ell}^{p} \sim \ell^{\xi_{p}}$ exact results

* if fluctuations are bounded then $\xi_{2 p+2} \geqslant \xi_{2 p}(p=1,2,3, \ldots)$ (Frisch 91)
* Schwartz inequality gives $\xi_{p+q} \geqslant\left(\xi_{2 p}+\xi_{2 q}\right) / 2$ (for all positive p, q)
* hence, $d^{2} \xi_{p} / d p^{2} \leqslant 0$ and ξ_{p} is a concave function of $p(\forall p>0)$
linear behavior of ξ_{p} predicted from phenomenology
* K41 approach $\xi_{p}=p / 3$
* IK approach $\xi_{p}=p / 4$ (uncorrelated case)

Experimental results

* many analysis of observational and numerical data show departure from a linear behavior of the scaling exponents, ξ_{p}, and this departure becomes larger as $p \nearrow \ldots$ something is going wrong with the original K41 theory * p.d.f.s of velocity increments have less and less Gaussian forms as $\ell \searrow$; for $\ell \sim \ell_{0}$ the p.d.f of this increments is essentially indistinguishable from a Gaussian, at inertial range separations, it develops almost expontial wings, and at even smaller scales, it takes form of "stretched exponential". This is probably due to the strong localization of the strong fluctuations

Interpretation and modeling

- Source of the fundamental problem with K 41 : within a volume \mathcal{V}_{ℓ}, it is not the mean rate of dissipation ϵ that is relevant but rather the local dissipation $\epsilon(\boldsymbol{x}, t)=\nu / 2\left(\partial_{j} u_{i}+\partial_{i} u_{j}\right)^{2}$ averaged over $\mathcal{V}_{\boldsymbol{\ell}}$ (for ex. a sphere of center \boldsymbol{x} and radius $\ell): \epsilon_{\ell}(\boldsymbol{x}, t) \equiv<\epsilon(\boldsymbol{x}, t)>_{\mathcal{V}_{\boldsymbol{\ell}}}$ $<\epsilon_{\ell}^{p}(x, t)>$ will depend upon ℓ (homogeneity) and let's suppose $<\epsilon_{\ell}^{p}(x, t)>\sim \ell^{\tau_{p}}\left(\ell_{\nu} \ll \ell \ll \ell_{0}\right)$

Interpretation and modeling

- Source of the fundamental problem with K 41 : within a volume \mathcal{V}_{ℓ}, it is not the mean rate of dissipation ϵ that is relevant but rather the local dissipation $\epsilon(x, t)=\nu / 2\left(\partial_{j} u_{i}+\partial_{i} u_{j}\right)^{2}$ averaged over $\mathcal{V}_{\boldsymbol{\ell}}$ (for ex. a sphere of center \boldsymbol{x} and radius $\boldsymbol{\ell}): \epsilon_{\boldsymbol{\ell}}(\boldsymbol{x}, t) \equiv<\epsilon(\boldsymbol{x}, t)>_{\mathcal{V}_{\boldsymbol{\ell}}}$ $<\epsilon_{\ell}^{p}(x, t)>$ will depend upon ℓ (homogeneity) and let's suppose $<\epsilon_{\ell}^{p}(x, t)>\sim \ell^{\tau_{p}}\left(\ell_{\nu} \ll \ell \ll \ell_{0}\right)$
- $\epsilon_{\ell} \sim\left(\delta v_{\ell}\right)^{2} / t_{\ell} \sim\left(\delta v_{\ell}\right)^{3} / \ell$, with $\epsilon_{\ell} \sim<\epsilon_{\ell}(x, t)>, \delta v_{\ell}$ has the same scaling laws than $\left(\ell \epsilon_{\ell}\right)^{1 / 3}$ (Refined similarity hypothesis, Kolmogorov 62)

Interpretation and modeling

- Source of the fundamental problem with K 41 : within a volume \mathcal{V}_{ℓ}, it is not the mean rate of dissipation ϵ that is relevant but rather the local dissipation $\epsilon(x, t)=\nu / 2\left(\partial_{j} u_{i}+\partial_{i} u_{j}\right)^{2}$ averaged over $\mathcal{V}_{\boldsymbol{\ell}}$ (for ex. a sphere of center \boldsymbol{x} and radius $\boldsymbol{\ell}): \epsilon_{\boldsymbol{\ell}}(\boldsymbol{x}, t) \equiv<\epsilon(\boldsymbol{x}, t)>_{\mathcal{V}_{\boldsymbol{\ell}}}$ $<\epsilon_{\ell}^{p}(x, t)>$ will depend upon ℓ (homogeneity) and let's suppose $<\epsilon_{\ell}^{p}(x, t)>\sim \ell^{\tau_{p}}\left(\ell_{\nu} \ll \ell \ll \ell_{0}\right)$
- $\epsilon_{\ell} \sim\left(\delta v_{\ell}\right)^{2} / t_{\ell} \sim\left(\delta v_{\ell}\right)^{3} / \ell$, with $\epsilon_{\ell} \sim<\epsilon_{\ell}(x, t)>, \delta v_{\ell}$ has the same scaling laws than $\left(\ell \epsilon_{\ell}\right)^{1 / 3}$ (Refined similarity hypothesis, Kolmogorov 62)
- $\left(\delta v_{\ell}\right)^{p} \sim\left(\ell_{\epsilon}\right)^{p / 3} \sim \ell^{p / 3} \ell^{\tau_{p / 3}} \sim \ell^{\xi_{p}} \longrightarrow \quad \xi_{p}=p / 3+\tau_{p / 3}$

Interpretation and modeling

- Source of the fundamental problem with K41: within a volume \mathcal{V}_{ℓ}, it is not the mean rate of dissipation ϵ that is relevant but rather the local dissipation $\epsilon(x, t)=\nu / 2\left(\partial_{j} u_{i}+\partial_{i} u_{j}\right)^{2}$ averaged over \mathcal{V}_{ℓ} (for ex. a sphere of center x and radius $\ell): \epsilon_{\ell}(x, t) \equiv<\epsilon(x, t)>\nu_{\ell}$ $<\epsilon_{\ell}^{p}(x, t)>$ will depend upon ℓ (homogeneity) and let's suppose

$$
<\epsilon_{\ell}^{p}(x, t)>\sim \ell^{\tau_{\rho}}\left(\ell_{\nu} \ll \ell \ll \ell_{0}\right)
$$

- $\epsilon_{\ell} \sim\left(\delta v_{\ell}\right)^{2} / t_{\ell} \sim\left(\delta v_{\ell}\right)^{3} / \ell$, with $\epsilon_{\ell} \sim<\epsilon_{\ell}(x, t)>, \delta v_{\ell}$ has the same scaling laws than $\left(\ell_{\ell}\right)^{1 / 3}$ (Refined similarity hypothesis, Kolmogorov 62)
- $\left(\delta v_{\ell}\right)^{p} \sim\left(\ell \epsilon_{\ell}\right)^{p / 3} \sim \ell^{p / 3} \ell^{\tau_{p / 3}} \sim \ell^{\xi_{p}} \longrightarrow \quad \xi_{p}=p / 3+\tau_{p / 3}$
- many attempts to take into account the influence of possibly strong fluctuations in ϵ (or intermittency) with a modeling of $\tau_{p / 3}$ exponent retaining the central concept of energy cascade through an extended inertial range (Log-normal model (Kolmogorov-Obukhov 62), β-model (Frisch et al. 78), Log-Poisson model (She-Lévêque 94))
$26^{\text {th }}$ July - $5^{\text {th }}$ August 2016
H. Politano (UNS)

HD \& MHD Turbulence

Scenario of modified Richardson's cascade

sporadic energy tranfer through inertial range: only a small fraction of eddies of size $\ell \ll \ell_{0}$ is involved in the energy transfer to smaller scales, the other ℓ-eddies stay at rest (excitation on scale ℓ is confined, eddies are thus no more space-filling)

Log-Poisson model

The Log-Poisson model (She-Lévêque (SL),1994) currently provides the best fit for the ξ_{p}-exponents computed from experimental or numerical data.

- essential assumption: existence of a hierarchy of successive moments of energy dissipation at a given scale ℓ with a power law exponent, β, of the hierarchy $(0<\beta<1)$
- scaling exponent, α, for the characteristic time to dissipate the maximum amount of energy in the most intermittent dissipative structures; $t_{\ell} \sim \ell^{\alpha}$ (one can set a value for α in accordance with some phenomenology)
- C_{0} codimension of the dissipative structures; $C_{0}=\alpha /(1-\beta)$, and as $C_{0} \leqslant D$ (where D is the dimension of space) $\rightarrow \beta \leqslant 1-\alpha / D$

The model is thus a two-parameter model (for a general formulation of the model see Politano \& Pouquet, 1995).
H. Politano (UNS)

HD \& MHD Turbulence

- SL HD

$$
\xi_{p}=\frac{p}{3}+\alpha\left(\frac{1-\beta^{p / 3}}{1-\beta}-\frac{p}{3}\right)
$$

"standard" model: $\alpha=2 / 3$ (K41) and $C_{0}=2$ codimension of tube-like dissipative structures $\rightarrow \beta=2 / 3$ (original SL model, 1994)

- SL MHD IK, case $H^{c} \sim 0 \& P_{M} \sim 1$,

$$
\xi_{p}=\frac{p}{4}+\alpha\left(\frac{1-\beta^{p / 4}}{1-\beta}-\frac{p}{4}\right)
$$

"standard" model: $\alpha=1 / 2$ (IK) and $C_{0}=1$ codimension of sheetlike dissipative structures $\rightarrow \beta=1 / 2$ (Grauer et al., 1994)

- SL MHD K41, case $H^{c} \sim 0 \& P_{M} \sim 1, \xi_{p}=\frac{p}{3}+\alpha\left(\frac{1-\beta^{p / 3}}{1-\beta}-\frac{p}{3}\right)$ "standard" model: $\alpha=2 / 3$ (K41) and $C_{0}=1$ codimension of sheet-like dissipative structures $\rightarrow \beta=1 / 3$ (Horbury \& Balogh, 1997)

In the case of anisotropic MHD see, for ex., W.-C. Müller, in Lecture Notes in Physics, vol. 756, 2009

References: some books and references therein

G. K. Batchelor, The Theory of Homogeneous Turbulence, Cambridge University Press, 1953
A. Brandenburg \& A. Nordlund, Astrophysical Turbulence Modeling, Rep. Prog. Phys, 74, 2011
P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge University Press, 2001
\& Turbulence in Rotating and Electrically Conducting Flow, Cambridge Univ. Press, 2013
U. Frisch, Turbulence, Cambridge Univ. Press, 2nd edition, 1996
J. P. Goedbloed \& S. Poedts, Principles of Magnetohydrodynamics, Cambrige Univ. Press, 2004
J. P. Goedbloed, R. Keppens \& S. Poedts, Advanced Magnetohydrodynamics, Cambridge Univ. Press, 2009
R. M. Kulsrud, Plasma Physics for Astrophysics, Princeton University Press 2005
L. D. Landau \& E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford, 1987
H. K. Moffatt, Magnetic Field generation in electrically Conducting Fluids, Cambridge Univ.

Press, 2nd edition, 1983
S. Molokov, R. Moreau, H. K. Moffatt (Eds.), Magnetohydrodynamics, Historical Evolution and Trends, Springer, 2007 (contains review articles)
S. B. Pope, Turbulent Flow, Cambridge Univ. Press, 2000
E. R. Priest, Solar Magnetohydrodynamics, Springer Netherlands, 1982
P. H. Roberts, An introduction to magnetohydrodynamics, American Elsevier Pub. Co, 1967

[^0]: ${ }^{1}$ strict resonance is not required for the non-linear interactions between 3 waves of form $z_{k} \mathrm{e}^{i(\boldsymbol{k} \cdot \boldsymbol{x}-\bar{\omega} \boldsymbol{t})}$
 H. Politano (UNS)

 HD \& MHD Turbulence

