AGAT 2016, Cargèse a point-vortex toy model

Jean-François Pinton
CNRS \& ENS de Lyon

M.P. Rast, JFP, PRE 79 (2009)
M.P. Rast, JFP, PRL 107 (2011)
M.P. Rast, JFP, P.D. Mininni, PRE 93 (2009)

Motivations

- Turbulence, transport issues, mostly Langrangian
- Toy model
- Analytics
- Cargèse

Lagrangian dynamics

$$
\delta_{\tau_{0}} v(t)=v\left(t+\tau_{0}\right)-v(t) \Rightarrow C(t)=\left\langle\delta_{\tau_{0}} v\left(t^{\prime}+t\right) \delta_{\tau_{0}} v\left(t^{\prime}\right)\right\rangle_{t}
$$

Lagrangian dynamics

$$
\delta_{\tau_{0}} v(t)=v\left(t+\tau_{0}\right)-v(t) \Rightarrow C(t)=\underset{i_{n}}{ }=\left\langle\delta_{\tau_{0}} v\left(t^{\prime}+t\right) \delta_{\tau_{0}} v\left(t^{\prime}\right)\right\rangle_{t}
$$

Mordant, Metz, Michel, Pinton, Phys. Rev. Lett. 89 (2002)

Lagrangian dynamics

MRW model

Bacry, Delour, Muzy, Phys. Rev. E, 64, (2001). (also Aringazin \& Mazhitov, Int. J. Mod. Phys., 18 (2004))
stochastic equation for the velocity increments

$$
d_{t} u=-\gamma(u) u+\xi(t)
$$

' K 41 ' theory : $\xi(\mathrm{t})$ is δ-correlated noise,
Model, from observations :

$$
\xi(t)=e^{\omega(t)} G(t)
$$

$\mathrm{G}(\mathrm{t})$: gaussian, white in time, and :

$$
\langle\omega(t) \omega(t+\Delta t)\rangle_{t}=-\lambda^{2} \log \left(\Delta t / T_{L}\right)
$$

Questions

- scalar transport without molecular diffusion

$$
\partial_{t} c+\mathbf{u} \cdot \nabla c=S(\mathbf{x}, t)
$$

- concentration, if Green's function is known

$$
\langle c(\mathbf{x}, t))\rangle=\iint P\left(\mathbf{x}, t \mid \mathbf{x}^{\prime}, t^{\prime}\right) S\left(\mathbf{x}^{\prime}, t^{\prime}\right) d \mathbf{x}^{\prime} d t^{\prime}
$$

Note

DISSIPATIVE RANGE

Note : diffusion enhances separation

$$
\frac{1}{2} \frac{d\left\langle r^{2}\right\rangle}{d t}=\frac{B\left\langle r^{2}\right\rangle}{\tau_{\eta}}+6 \kappa+2 \kappa \frac{\left(t-t_{0}\right)^{2}}{\tau_{\eta}^{2}}
$$

Saffman PG. On the effect of the molecular diffusivity in turbulent diffusion.
J. Fluid Mech. 8:273-83 (1960)

Point-vortex, as the cheapest toy model?

- An old idea (Onsager, 1949)
- With some 3D features
$\mathbf{u}(\mathbf{x})=\sum_{\mathbf{1}}^{\mathbf{N}} \frac{\Gamma_{\mathbf{k}}}{2 \pi\left|\mathbf{x}-\mathbf{x}_{\mathbf{k}}\right|}\left[\hat{\mathbf{z}} \times\left(\widehat{\mathrm{x}-\mathbf{x}_{\mathbf{k}}}\right)\right]$
+ merger
+ injection (constant rate, Gaussian distribution)

MIMIC 3D TURBULENCE WITH 2D-MODEL

Mininni et al. (2008+)

Rast \& Pinton (2009)

Gruchalla et al. (2009)

Sources and sinks of kinetic energy vs. merger scheme.
(A) circulation conserving : merger of like-sign vortices conserves angular momentum but dissipates energy:

$$
\left(\Gamma_{1}+\Gamma_{2}\right)^{2}>\Gamma_{1}^{2}+\Gamma_{2}^{2}
$$

while merger of opposite sign vortices dissipates both angular momentum and energy, because

$$
\left(\Gamma_{1}+\Gamma_{2}\right)^{2}<\Gamma_{1}^{2}+\Gamma_{2}^{2}
$$

(B) in the signed squared circulation preserving scheme, summing like-sign vortices conserves energy but dissipates angular momentum because

$$
\sqrt{\Gamma_{1}^{2}+\Gamma_{2}^{2}}<\Gamma_{1}+\Gamma_{2}
$$

but opposite sign dissipate energy and add angular momentum, since:

$$
\operatorname{sgn}\left(\Gamma_{1}^{2}-\Gamma_{2}^{2}\right) \sqrt{\left|\Gamma_{1}^{2}-\Gamma_{2}^{2}\right|}>\Gamma_{1}-\left|\Gamma_{2}\right|
$$

Lagrangian features

and « full» intermittency!

INTERMITTENCY

Pair dispersion

Scaling expectations

- Very short times : exponential separation following the larger Lyapunov exponent,
- Very long times : diffusion: $\left\langle r^{2}(t)\right\rangle \propto t$
- Intermediate : Richardson - Obukhov: $\left\langle r^{2}(t)\right\rangle \propto\langle\epsilon\rangle t^{3}$
- Bachelor correction: $\left\langle r^{2}(t)\right\rangle \propto\left(\langle\epsilon\rangle r_{0}\right)^{2 / 3} t^{2}$

scaling

- Neighbor distance function
- $q_{R}(r, t)=\frac{429}{70} \sqrt{\frac{143}{2}}\left(\pi\left\langle r^{2}\right\rangle\right)^{-3 / 2} \exp \left[-\left(\frac{1287 r^{2}}{8\left\langle r^{2}\right\rangle}\right)^{1 / 3}\right]$

$$
q_{B}(r, t)=\left(\frac{2 \pi}{3}\left\langle r^{2}\right\rangle\right)^{-3 / 2} \exp \left[-\frac{3}{2} \frac{r^{2}}{\left\langle r^{2}\right\rangle}\right]
$$

... or nor scaling!

Bourgoin et al. 2006

Biferale et al. 2006

... or nor scaling!

scaling-wise, the point vortex model is as « convincing» as other exp or num!

... or nor scaling!

scaling-wise, the point vortex model is as « convincing» as other exp or num!

(b)

separation

Distribution of times required to double the initial separation. r0 = 0.05, 1.29, 3.57, 7.53, 15.4, and 31.4

That is, even if many pairs separate right away, a significant fraction can remain bound for times comparable to the large scale eddy turnover time.

Model of the model

- Step 1 : particles retain their initial separation rO for a time td (uniform)
- Step 2 : they separate algebraically $r^{2}=r_{0}^{2}+\left(t-t_{d}\right)^{\alpha}$

Separation

Distribution of separations

Dynamical picture

- $r(t)$ evolves as a sequence of expansion and stall phases,
- stall phases (in the model) come from coherent eddies,
- at all separations, a pair has a uniform probability of being stalled any amount of time, i.e. it has the same probability of separating right away or being stuck together « for ever »,
- here, scaling is subdominant because of the leading influence of coherent structures / trapping !

Statistical picture

J. Fhuid Mech. (2015), vol. 772, pp. 678-704. (C) Cambridge University Press 2015

Turbulent pair dispersion as a ballistic cascade phenomenology

Mickaël Bourgoin \dagger

Scalar concentration

$$
\langle c(\mathbf{x}, t))\rangle=\iint P\left(\mathbf{x}, t \mid \mathbf{x}^{\prime}, t^{\prime}\right) S\left(\mathbf{x}^{\prime}, t^{\prime}\right) d \mathbf{x}^{\prime} d t^{\prime}
$$

- direct determination of $P\left(x, t \mid x^{\prime}, t^{\prime}\right)$ is overly ambitious
- isotropy : $P\left(x, t^{\prime} \mid x^{\prime}, t^{\prime \prime}\right)=P(r, t) / 2 \pi r=\left|x-x^{\prime}\right|, t=t^{\prime}-t^{\prime \prime}$
- so that r is the Eulerian distance traveled by a Lagrangian tracer during a time interval t

Starting two hundred time units into each of the simulations.

RED : Rayleigh distribution

$$
P(r, t)=\frac{r}{\sigma^{2}} \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right)
$$

of a 2 D random walk,

The probability of long distance transport is enhanced over the best fit twodimensional random walk Rayleigh distribution at very short and, in some cases, very long times [(a) and (c)] but suppressed over intermediate (inertial range) time scales (b).

Structures ?

Construct an artificial times series with the same auto and cross correlation coefficients as the vortex flow :

$$
\tilde{u}_{x}=\sqrt{\tilde{U}_{L}} \exp i \delta_{x}
$$

with uniformly distributed random phases (tilde = FT), and
$\tilde{u}_{y}=\tilde{u}_{x} \exp -i \delta_{y} \quad \delta_{y}=-i \ln \left(\frac{\tilde{C}_{L}}{\tilde{U}_{L}}\right)$

Eddy constrained random walk

Circular motion around an eddy,

$$
d r=2 r_{t}|\sin \theta| \quad r_{t} \theta=U_{L} t_{t}
$$

random sequence of such events, and $P(r, t)$ is build from

$$
P\left(r_{t}\right), P\left(t_{t}\right), P\left(U_{L}\right)
$$

with random (uniform) direction, and
$P\left(t_{t}\right)$ from observation : uniform between 0 and TL
$P\left(r_{t}\right)$ from « turbulence » phenomenology : $\propto r_{t}^{4 / 3}$ $P\left(U_{L}\right)$ from Lagrangian observation.
simulation (A)

BLACK : P(r, fixed t) for run (A)
RED : constrained random walk with random orientations

BLUE : large scale component fluctuations are added

Low wavenumber contributions

Add, at the position of the Lagrangian parcel, the Eulerian velocity at time t of the lowest order modes, i.e. large scale motions which still evolve in time at large scale.

$$
[0,1] \text { and }[1,0]
$$

conclusions

- It requires only the observed amplitude evolution of the lowest wave number modes (the mean and the lowest harmonic) and measurable statistics of the smaller scale flows (used in a constrained eddy to eddy random walk) to reproduce the scalar transport probabilistic impulse response function.
- NB : 3D : in progress : cf. Pablo Minini : on time scales set with collaborators very slow response time.

thank you

