Des nuages moléculaires aux coeurs denses et aux étoiles

Philippe André, CEA/SAp Saclay; Patrick Hennebelle, LERMA/ENS Paris

Plan du cours

- I. Introduction générale, nuages moléculaires et origine des cœurs denses
- II. Structure et effondrement des cœurs denses
- III. Fragmentation dynamique en systèmes multiples et formation des disques

Plan de la partie I-Observations

- 1. Introduction : Structure des nuages, formation stellaire en amas, scénario évolutif 'standard'
- 2. Recensement et spectre de masse des coeurs pré-stellaires
- 3. Origine et propriétés globales des coeurs pré-stellaires

Nuages moléculaires: les sites de formation stellaire

Galaxie des Antennes en CO(1-0)

La majorité des étoiles se forment dans des amas (e.g. Adams & Myers 2001; Lada & Lada 2003 ARA&A)

La majorité des étoiles se forment dans des petits amas (e.g. Adams & Myers 2001; Lada & Lada 2003)

- 3 modes de formation : (a) étoiles isolées/binaires;
 (b) groupes de 10-100 objets;
 (c) amas de >> 100 objets
- Mode dominant : groupes ou petits amas de ~ 100 objets (cf. ρ Oph)
- La plupart de ces groupes se dissolvent lorsque le nuage de gaz parent se dissipe
- → La majorité des étoiles de champ sont «!isolées!»

Evolution des flots moléculaires

Classe 0

Classe I

Recensements de proto-étoiles de «Classe 0» et condensations «pré-stellaires» en continuum (sub)-millimétrique

La distribution de masse des condensations pré-stellaires est compatible avec l'«IMF» des étoiles

→ Suggère que l'IMF est en grande partie déterminée par fragmentation au stade pré-stellaire + conversion masse pré-stellaire -> stellaire élevée A confirmer et étendre vers les petites/grandes masses avec ALMA et Herschel

Différence entre les «!clumps!» diffus vus en CO et les condensations pré-stellaires identifiées en continuum (sub)mm

Du nuage moléculaire aux proto-étoiles : Deux écoles de pensée pour la formation des coeurs pré-stellaires

<u>Le scénario classique</u>: diffusion ambipolaire (e.g. Shu et al. 1987, 2003; Mouschovias & Ciolek 1999)

Initialement: $M/\Phi \sim N/B < 0.12/ G^{1/2}$ $B > B_{crit} \sim 10 \ \mu G \ x \ (N_{H2}/10^{21} \ cm^{-2})$ Formation 'lente' de cœurs 'supercritiques' qui se découplent du nuage ambiant soutenu par B B orthogonal au grand axe des coeurs Le scénario turbulent/dynamique (e.g. Klessen et al. 2000; Padoan & Nordlund 2002)

Formation rapide de cœurs protostellaires en interaction à partir de fluctuations de densité turbulentes B désordonné, ~ le long des

Durée de vie des cœurs pré-stellaires «isolés»

Estimé en comparant le nombre de cœurs pré-stellaires au nombre de cœurs ayant formé au moins une étoile (e.g. Beichman et al. 1986)

• La durée de vie décroît avec la densité $t \sim n^{-0.85}$ (Jessop & Ward-Thompson 00)

• Durée de vie typique ~ 1.5 x 10⁶ ans à $n \sim 10^4 \text{ cm}^{-3}$ (e.g. Lee & Myers 1999) <=> ~ 4 x t_{ff} < 10 x t_{ff} ~ t_{AD}

Suggère que les cœurs pré-stellaires sont proches de l'équilibre pour $n < 1-5 \ge 10^5 \text{ cm}^{-3}$

En accord avec l'<u>équilibre viriel</u> <u>approximatif</u> observé (e.g. Myers et al. 1991)

Jessop & Ward-Thompson 2000

→ Le scénario turbulent pur est trop rapide

→ La diffusion ambipolaire est trop lente pour expliquer la formation des coeurs

Mesures de la force du champ magnétique dans les cœurs denses

• Très peu (15) de détections de B_{los} par effet Zeeman (Crutcher 1999)

• Corrélation trouvée : $B \sim n^{0.5}$ \longrightarrow B important (sinon $B \sim n^{2/3}$), compatible avec diffusion ambipolaire mais aussi avec turbulence Alfvénique ($\sigma_{turb} \sim V_A \sim B \cdot n^{-0.5}$)

 Meilleure corrélation : B ~ σ . n^{0.5}
 → suggère que le support turbulent est significatif

• Valeurs absolues de B_{los} suggèrent $M/\Phi \sim (M/\Phi)_{crit}$

Distribution des cœurs pré-stellaires le long de filaments: L'exemple du nuage du Taureau

Indications de l'importance dynamique du champ magnétique dans le nuage du Taureau à partir de cartes de polarisation

- Champ magnétique bien organisé,
 orthogonal au grand axe des coeurs
 parallèle à l'axe des flots/jets
- Champ ~ 140 μ G à 5 x 10⁵ cm⁻³ par la méthode de Chandrasekhar-Fermi (Crutcher et al. 2003)

L'exemple des filaments d'Orion : un champ magnétique hélicoidal ?

OMC3

OMC2

OMC1

6.5 pc

50'

Johnstone &

Bally 1999

• Filaments avec un champ magnétique très organisé d'après les cartes de polarisation à 850 µm (*Matthews et al. 2001, 2002*)

• Dépolarisation vers le centre

• Peut s'expliquer avec un modèle de filament confiné par un champ B hélicoidal (*Fiege & Pudritz 2001*)

Constraints on the relative motions between condensations from N_2H^+ maps

NGC2068 - 850 µm continuum (JCMT)

Global velocity dispersion in the protoclusters: $\sigma_{1D} \sim 0.37 \text{ km/s} \iff \sigma_{3D} \sim 0.65 \text{ km/s}$ for both NGC 2068 and ρ Oph

→ Crossing time of the protoclusters: $D/\sigma_{3D} \sim 1-2 \times 10^6 \text{ yr}$

> condensation lifetime ~ $1-5x10^5$ yr

→ Not enough time for dynamical interactions to play a role prior to PMS stage ? NGC2068 in N₂H⁺(1-0) (IRAM 30m)

Structure en vitesse interne des condensations pré-stellaires

Résumé des propriétés «globales» des condensations pré-stellaires

- Structures denses ($n_{H2} > 10^4 \text{ cm}^{-3}$), froides (T ~ 8-15 K), auto-gravitantes, formant ~ 1-3 étoiles
- Spectre de masse compatible avec l'IMF des étoiles (e.g. Motte et al. 1998)
- Peu turbulentes ($\sigma_{NT} < \sigma_T$ e.g. Goodman et al. 1998)
- Partiellement ionisées (n_e/n_{H2} ~ 10⁻⁸ 10⁻⁶ Caselli et al. '98) et influencées par le champ magnétique (Crutcher '99)
- Souvent organisées le long de filaments et apparemment elles-mêmes de forme allongée ou «tri-axiale» plutôt qu'aplatie (Myers et al. 1991, Basu 2000)
- En rotation lente (β = E_{rot}/E_{grav} ~ 0.02 Goodman et al.
 '93) et parfois déjà en effondrement (e.g. Tafalla et al. '98)
- Mécanisme de formation mal compris