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The Earliest Stages of Disk 
Evolution
What the solids tell us about the wild years of disk evolution: Part I
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Topics

✤ Timescales
✤ When things happen and understanding context

✤ Gravitational Instability
✤ What conditions can cause very violently unstable disks

✤ Consequences of Massive Disks
✤ Why instabilities matter for solids

✤ Timing in the Meteoritic Record
✤ The constraints for the Solar System

✤ Summary
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Disk Evolution

✤ We can think of disk evolution in three rough evolutionary phases
✤ Newly-forming disks

✤ Class 0 to Class 1 protostars.  Roughly few X 105 yr. 
✤ Established disks

✤ Your “typical” disk ~ few X 106 yr.
✤ Debris disks  

✤ Leftovers banging together. Ongoing, but bright for 108 yr.
✤ Note that these are not necessarily consistent with observational 

phases
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A Cinematic Approach
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Major Questions for Planet 
Formation

✤ When does planet formation begin?

✤ When does tdisk=0 correspond to tsolid=0?

✤ What are the environments of planet formation?

✤ What are the phases of planet formation?

✤ What modes of planet formation are possible?

✤ For the Solar System, meteorites give us clues
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What Is This Talk About

✤ Focusing on the early disk early epoch, i.e., the “Newly-Forming 
Disks.”

✤ Mass infall period ⇒ Embedded

✤ Denser, hotter than other stages of disk evolution

What are consequences of this phase of 
disk evolution for planet formation 
throughout the disk’s lifetime?
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Why Worry About Newly-Forming 
Disks?

Calcium-
Aluminum-rich 

Inclusions (CAIs) 
are old, and 

clustered around 
100 000 yr of each 

other
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Forming A Star: A Conceptual 
Take
✤ A cloud core collapses:

✤ Maybe due to diffusion of charged particles, compression from 
turbulence, multiple factors at once, etc.  

✤ Low angular momentum gas forms a stellar core

✤ High angular momentum gas falls onto a disk

✤ There will be a distribution of disk masses and initial sizes

✤ Temperatures and densities become very different than in 
cloud core
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Cloud Core Velocity Gradients

Caselli et al. 2002

 ~35% have rinit ≳ 100 AU
(My estimate -- see Boley et al. 2012)
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Mass Accretion

✤ Consider the mass infall rate during star formation
✤ Use the basics of a Jeans instability in a uniform cloud as a 

starting point
✤ λJeans = [πP/(Gρ2)]1/2

✤ MJeans = ρ (4π/3) (λJeans/2)3

✤ tff = [3π/(32 G ρ)]1/2

✤ ρ = μ mp n
✤ MJeans/tff = 5.4 ci3/G

✤ Shu 1977 self-similar collapse ⇒ MJeans/tff ~ ci3/G
10
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Mass Accretion

✤ Let’s put some values into those equations

✤ Herschel results find ~1 MSun cores with densities n~105 g/cc and 
temperatures as low as 15 K.  

✤ tff ~ 100 000 yr

✤ Ṁ ~ 1.5 X 10-5 MSun/yr   (~3 X 10-6 MSun/yr) for T = 15 K
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The Land of Gravitational 
Instability
✤ Toomre Q (1964) stability parameter

✤ Consider first a patch of a thin, uniformly rotating disk in the 
frame of that patch
✤ ∂Σ/∂t + ∇⋅(Σv) = 0
✤ ∂v/∂t + (v⋅∇)v= -∇P/Σ -∇Φ -2Ω×v + Ω2(xêx+yêy)
✤ ∇2Φ = 4πGΣδ(z)

✤ Now consider a small perturbation
✤ Σ = Σ0 + εΣ1(x,y,t); v = v0 + εv1(x,y,t); Φ = Φ0 + εΦ1(x,y,t)
✤ Keep only linear terms in ε
✤ Take the perturbation to have a form exp(-i(k⋅x-ωt))

✤ Analysis gives dispersion relation (see Binney & Tremaine)
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Instability

✤ For uniform rotation, the disk becomes unstable when
✤ 2 cs Ω/(π G Σ0) < 1
✤ cs2=∂P/∂Σ at Σ0 ⇒ sound speed

✤ For a differentially rotating disk (see Binney & Tremaine), unstable 
when

✤ cs !/(" G #0) < 1 ⇒ ring instability
✤ κ2 = R dΩ2/dR+4Ω2 at guiding center ⇒ epicyclic frequency

✤ Stability of disk against gravitational perturbations
✤ Long wavelengths are stabilized by shear (κ)
✤ Short wavelengths are stabilized by the sound speed
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Energy Budget

Consider a non-self-gravitating disk
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 Energy Budget

✤ Take scaleheight H = cs/Ω

✤ Thermal energy ~ cs2

✤ Gravitational energy ~ Ω2H2

✤ Rotational energy ~ Ω2R2

✤ Thermal to rotational energy and Gravitational to 
Rotational energy ~ (H/R)2

✤ H/R ~ 0.1, so instabilities only need to tap a small amount 
of rotational energy 15
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How Do Instabilities Manifest 
Themselves?

When Q ≲1.7
The spiral 

instability can 
set in 

(Durisen et al. 
2007)
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Temperatures and Densities

✤ Use Q to estimate structure an unstable disk
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Why Should The Disk Become 
Unstable?

18

Infall should mass load a disk
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Driving The Instability

✤ Ways out? Disk becomes much hotter than sound speed of 
envelope (definitely possible)

✤ But! Depending how infall is distributed, instabilities 
could still in principle occur even with a very hot disk

✤ What about magnetic fields? Definitely something to 
consider. Simulations show that strong disk instability can 
still happen.
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Evolution of the Instability

✤ Whenever Q ≲ 1.7 ⇒ Spiral instability
✤ Spirals create shocks and drive mass transport
✤ Under likely conditions, can balance cooling
✤ Disk just evolves with lots of non-axisymmetric 

structure
✤ Called self-regulation

✤ Under some conditions, which are STILL being explored, 
self-regulation can fail and produce clumps
✤ Will discuss later
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Shocks Give Localized Heating
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Non-Axisymmetry and Torques

23

 Bursts of 
instability can 

give rise to 
extremely high 
mass accretion 

rates
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Simple EOS. Includes B fields. 2D. Vorobyov & Basu 2006
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Vorobyov & Basu 2006
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Inutsuka et al. 2010. Magnetic decoupling at n = 1010/cc. Simple EOS
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Machida et al. 2011
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Machida et al. 2011
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2D simulations. Variation in accretion rate and infall radius. Form of 
radiative cooling

3×10-6  MSun/yr 3×10-4  MSun/yr

65 AU

200 AU

Tuesday, February 12, 13



Summary for Disk Instability

✤ Star formation process can lead naturally to a period of intense disk 
heating on timescales of 100 000 yr

✤ Mass accretion ultimately drives the instability, and can feed episodic 
bursts of activity

✤ Spiral structure is a natural outcome of disk instability, creating 
shocks and can lead to prodigious mass transport

✤ Fragmentation can happen. Many of resulting fragments are 
destroyed

✤ Period of intense disk instability expected to last for a period of time 
that is similar to the age spread in CAIs
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Spiral Structure
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Boley & Durisen 2008. Fluid element temperature excursions.
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Fluid element histories from Boley & Durisen 2008
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Ilee et al. 2011
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Ilee et al. 2011. Chemical models based on simulations.
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Alan P.  Boss , Conel M.O'D.  Alexander , Morris  Podolak 2012
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Consequences of Spiral Shocks

✤ Spiral shocks repeatedly create changes in environment
✤ Heating profiles can have rapid rise, followed by 

protracted cooling, or “rapid” rise and “rapid” cooling
✤ Many near-sonic heating events (Boley & Durisen 2008; Cossins et al. 2009)

✤ Everything is processed to some degree
✤ Very strong shocks are rare
✤ Spiral pitch angles are ~10o (in WKB tan i ~ β h/r ~ β cs/vφ)

✤ But, spirals are not the only thing that can heat
38
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Why Fragments Matter
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Why Should They Be Destroyed?

✤ Initial clump size will be multiple AU in size

✤ RHill = a (Mc/(3MStar))1/3

✤ For q=Mc/MStar=10-3, RHill ~ 0.07a

✤ For q = 10-2, RHill~0.15a

✤ Eccentric orbits, clump-clump interactions, clump-disk 
interactions ⇒ clump overflow its Hill sphere
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A Clump From A Global Sim
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Clumps are fragile. Tides can destroy them with ease.
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Consequences of Clump 
Destruction

✤ Each clump is a mini nebula

✤ Release processed solids into the nebula

✤ Solid and chemical alteration

✤ Could in principle form cores before destruction

✤ Tidal stripping/tidal downsizing                                           
(Boley et al. 2010; Nayakshin 2010)
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Overall and Future Direction
✤ Multiple mechanisms for heating the disk during very 

early times
✤ Does anything make it through unscathed?

✤ Very large radii?
✤ Significant work to be done before the regime of CAI 

formation is modeled
✤ We have only scratched the surface, and the studies are 

largely insufficient
✤ Other ideas?

✤ Processing by the protostar itself? (e.g., Gail et al. 2009)
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Food For Thought

45

• CAIs 4567 Myr [1]

• Iron meteorite parent body 
formation for ~1.5 Myr [2]

• Mars half assembled by 
1.8 Myr [3]

• Most chondrules are 
younger than CAIs, iron
meteorite parent bodies, and 
maybe planetoids

[1] Amelin et al. 2002; [2] 
Schersten et al. 2006; [3] 
Dauphas & Pourmand 2011
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