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Machine learning - Introduction

● Machine learning is a branch of algorithmic that manages 
models for a sample of data, based on a set of examples, 
to predict behavior of another set of data (training set and 
test set).

● It is part of “Artificial Intelligence”.
● Its performances recently increased due to improvements 

in hardware (GPU) and software (libraries).



  

ML use in astronomy

Astronomy papers in ADS 
containing "Artificial Intelligence" 
or "Machine learning" or "Deep 
learning" in the abstract.



  

Machine Learning : a whole world



  

ML used in astronomy

● Unsupervised Learning

– Clustering: Machine learning in APOGEE. Identification of stellar populations through chemical 
abundances, Garcia-Dias+19

● Reinforcement Learning

– Deep reinforcement learning for smart calibration of radio telescopes Yatawatta+21
● Supervised Learning

– Classification: a lot e.g. A diagnostic tool for the identification of supernova remnants Kopsacheili+20 

– Regression: THIS WORK 

Reviews: 

– Surveying the reach and maturity of machine learning and artificial intelligence in astronomy, 

Fluke & Jacobs 2020 
– Artificial Intelligence in Astrophysics, book Zelinka+21

https://ui.adsabs.harvard.edu/abs/2019A&A...629A..34G
https://ui.adsabs.harvard.edu/abs/2021MNRAS.tmp.1357Y
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491..889K
https://ui.adsabs.harvard.edu/abs/2020WDMKD..10.1349F
https://www.springer.com/gp/book/9783030658663


  

Artificial Neural Network

● Each neuron receives data (inputs) 
and produces a single output.

● The output is obtained by applying 
an activation function to the 
weighted sum of the inputs 

● A constant term can also be added 
 (bias).

● Neurons are grouped together by 
layers.



  

Activation functions



  

Simple example of a 2 neurons 
network



  

Decision trees, random forest, 
gradient boosting

● Decision tree: sequential process, 
test-based, to determine a final 
value. 

● Random forest: majority of weak 
trees is strong!

● Boosting is a method to increase 
strongness of weak trees.



  

Summary:
My uses of ML in nebular studies

● Te-Ne : very fast determination
● ICFs : ad-hoc values

– From other ionic fractions (Muse data)
– From emission line ratios (PC-22)

● Exploring multiple solutions in O/H determination
– (Direct)
– Evolution models.



  

PyNeb.Diagnostics.getCrossTemDen

PyNeb.Diagnostics.getCrossTemDen:
– Obtain Te and Ne from a pair of diagnostic line 

ratios e.g. [OIII] 4363/5007 & [SII] 6716/6731.
– Starts to be slow when dealing with IFUs+MC 

data sets.
– SOLUTION:

● Generate Diag1 & Diag2 from a grid of Te & Ne.
● Train a scikit-learn ANN (10 secs, may be saved for future use) to predict reverse 

problem: gives Te & Ne from Diag1 & Diag2. 
● Use the ANN: from 5 hours to 2 seconds!



  

Need for fast solutions

● In case of MUSE observations: 200x200 spaxels.
● Monte-Carlo method to follow uncertainties through the 

whole pipeline (Reddening correction, Te-Ne, Xi/H+, X/H).
● → 200x200x150 = 6,000,000 “spectra” per object! 
● Also used for T(Paschen Jump).
● Garcia-Rojas+21, subm:



  

Te maps for 3 PNe, under different 
hypothesis

● Easy to “play” with the 
data and to test the effect 
of recombination 
contribution correction at 
different temperature.

● Apparent warm gas in 
the central part is only 
due to not correctly 
taking into account this 
contribution, actually 
coming from a cold 
region (!).

● Stay tuned: Garcia-Rojas 
et al., submitted.



  

ICFs

To determine chemical abundances, one needs to take into account the presence of 
unseen ions, e.g.:

These ICF are determined using photoionization models (obtained for example running 
Cloudy).



  

Photoionization models

INPUTS:
– Ionizing SED:

● Teff, log g, Z, Intensity

– Gas:
● n_H(r), inner cavity
● O/H, N/H, …
● Dust

OUTPUTS:
– Te
– H+/H, N+/N, O+/O, O2+/O, 

O3+/O, ...
– Hβ, [NII] 6584, [OII] 3727, 

[OIII] 5007, …
– ...

CODE

ICFs



  

3MdB

● Machine Learning techniques like to have A LOT of data to 
train with, to increase performances in prediction.

● 3MdB is a database of photoionization models, obtained 
with Cloudy (Ferland et al.), for PNe and HII regions.

● More than 2 million models, still growing.



  

ICFs from Delgado-Inglada et al. 2015

● ICF(N+/O+) is commonly 
assumed to be 1.0: 

● Using grids of photoionization 
models, more complex ICFs can 
be determined (DIMS15):

log ICF(N+/O+)=−0.16ω(1+logυ).



  

New ICFs: example of N/O

● A neural network is trained with 
35,000 models from 3MdB 
(50x50 neurons).

● O++/O, He++/He and S++/S+ are 
used as inputs. Very hard to 
define an algebraic fit in a 3D 
space.

● ICFs obtained with ANN are 
closer to the expected values as 
determined from models. 

STD=0.11 dex

STD=0.016 dex



  

Ad-hoc ICFs, for given object

● In the study of 3 PN observed 
by MUSE, we compute ICFs 
adapted to each PN to derive 
the elemental abundances for 
the collapsed spectra.

● We select models from 3MdB 
“close” to the given PN.

● We train an XGBoost 
Machine.

● Garcia-Rojas et al., 
submitted.

● Inputs for the ML 
– He2+/He+ 
– O2+/O+

– S2+/S+

– Cl3+/Cl2+

– Ar3+/Ar2+

● Predictions: 

– C/C+

– N/N+ 

– (O+/O).(N/N+)  

– O/(O+ + O2+)

– S/(S+ + S2+)

– Cl/(Cl2+ + Cl3+)  

– Ar/(Ar2+ + Ar3+)



  

Feature importances

                   He2+/He+   O2+/O+   S2+/S+   Cl3+/Cl2+   
Ar3+/Ar2+

N+                   0.00          0.96       0.04         0.00              0.00

N+/O+             0.04          0.02       0.71         0.23              0.01

O+ + O++         0.45          0.01       0.38         0.13              0.03

S+ + S++          0.00          0.00      0.00         0.00              1.00

Cl2+ + Cl3+    0.00          0.05       0.94         0.00             0.00

Ar2+ + Ar3+  0.09          0.02      0.80         0.07              0.03

The importance of each ionic fraction is not the same for each ICF.

These values slightly change from one object to another. 

ICFs

Observed ionic fractions



  

ICFs using ML techniques

● In the case of the PN PC22, 
we determine 11 ICFs from 6 
line ratios, using a ML 
method based on XGBoost.

● A Te-sensitive line ratio have 
been added to connect 
emissivities and abundancias.

● Sabin et al. submitted.



  

NEW! 
Better defined 
than Cl++/O+

ICFs

● The ICFs we obtained 
can be compared to the 
classical ones from the 
literature.

● New ICFs have been 
obtained.

● Sabin et al. submitted.



  

Sulfur ICF

● We obtain a new ICF 
related to O++.

● It is more reliable than 
based on residual ion O+.

● Sabin et al. submitted.



  

Feature importance

              [OIII]/[OII] [NeV]/[NeIV] [NeIV]/[NeIII] [ArV]/[ArIV]   HeII/HeI [OIII]5007/4363

O+ + O++             0.00         0.01         0.05         0.17         0.75         0.01

N+/O+                0.16         0.03         0.03         0.14         0.30         0.34

Ne2+ + Ne4+          0.06         0.09         0.01         0.03         0.75         0.07

Ne2+ + Ne3+ + Ne4+   0.08         0.05         0.02         0.60         0.02         0.22

Ne2+/O2+             0.10         0.09         0.03         0.06         0.49         0.23

S+ + S++/O++         0.18         0.06         0.03         0.10         0.17         0.46

Cl2+/O2+             0.24         0.05         0.03         0.09         0.14         0.46

S+ + S2+             0.12         0.10         0.02         0.18         0.39         0.18

Ar3+ + Ar4+          0.17         0.03         0.02         0.11         0.52         0.16

S+ + S2+/O+          0.08         0.01         0.00         0.12         0.69         0.09

Cl2+/O+              0.10         0.01         0.00         0.12         0.66         0.10

HeII/HeI and [OIII] 5007/4363 are the most helpful, but other line ratios also matter.
Sabin et al. submitted. 

<15%
>15%Observed line ratios

ICFs



  

O/H from strong lines

● Ho 2019 already used a ML technique to determine O/H from strong 
lines.

● N/O(O/H) and U(O/H) relations have effect on the strong line 
method calibrators when models are used.

● We use the e-BOND models stored in 3MdB.
● We train an ANN regressor to mimic the behavior of Cloudy, but 

very faster
● We can now change the N/O(O/H) and U(O/H) relations and see the 

effects on the calibrations.



  

Photoionization models

INPUTS:
– Ionizing SED:

● Teff, log g, Z, Intensity

– Gas:
● n_H(r), inner cavity
● O/H, N/H, …
● Dust

OUTPUTS:
– Te
– H+/H, N+/N, O+/O, O2+/O, 

O3+/O, ...
– Hβ, [NII] 6584, [OII] 3727, 

[OIII] 5007, …
– ...

Cloudy
ML



  

Changing N/O y log U

Espino-Ponce et al. In prep.



  

Changing N/O y log U

Espino-Ponce et al. In prep.



  

Changing N/O y log U

Espino-Ponce et al. In prep.



  

Photoionization models

INPUTS:
– Ionizing SED:

● Teff, log g, Z, Intensity

– Gas:
● n_H(r), inner cavity
● O/H, N/H, …
● Dust

OUTPUTS:
– Te
– H+/H, N+/N, O+/O, O2+/O, 

O3+/O, ...
– Hβ, [NII] 6584, [OII] 3727, 

[OIII] 5007, …
– ...

Cloudy
ML

Evolution Algo



  

Looking for all the 
solutions

Strong lines
● Perez-Diaz+21 use [NII], [OIII] and [SII] to determine 

O/H running HII_CHI_m (Perez-Montero14) 
● ANN is trained using e-BOND models from 3MdB to 

predict those lines, giving O/H, N/O, logU, and age.
● A Genetic Evolution model uses this ANN to look for 

the sets of parameters simultaneously fitting the 
observations of IC 2574. 370,000 calls to ANN.

● All the points in the contours correspond to values of 
parameters leading to reasonable fit to the observed 
data → degeneracy of O/H.

● The “Best Model” is a meaningless concept.
● The “weighted mean value” is rather risky.
● Morisset et al. In Prep.

https://ui.adsabs.harvard.edu/abs/2021arXiv210511164P
http://adsabs.harvard.edu/abs/2014MNRAS.441.2663P


  

Uses of ML

AI4Neb python library



  

Christophe Morisset
IA-UNAM

Thanks a lot!
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