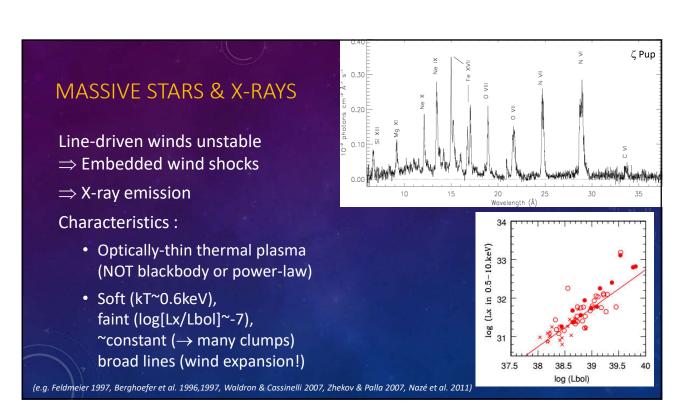
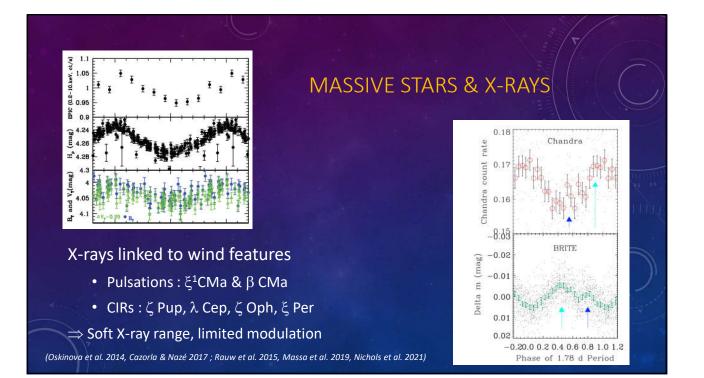


MASSIVE STARS

- the top of the MS (OBAFGKM)
- $T > 20 \text{kK}, \text{ M} > 15 \text{ M}_{sol}$
 - Blue \Rightarrow lot of UV
 - Luminous (10⁶ L_{sol})
 - Short-lived (<< 1 Gyr)
 - Evolve as LBV/RSG, WR
 - Precursors of SN, NS, BH (+GRB, GW...)
- Rare objects but major contributor to mech. input & chem. enrichment
- Stellar winds !

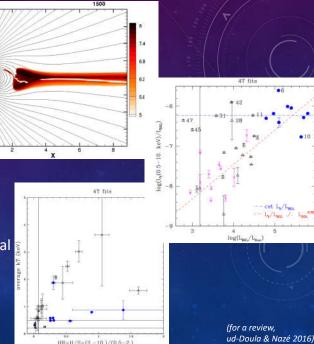


MASSIVE STARS & X-RAYS

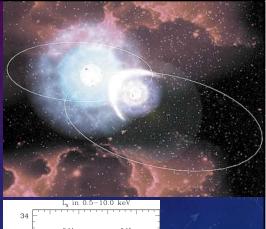


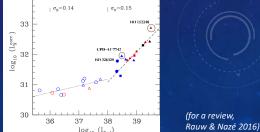
44 years ago...

X-ray emission serendipitously discovered in Dec. 1978 by Einstein ; soon, lot of other cases...


Origin ? What is a « normal » X-ray emission ?

Magnetically confined winds

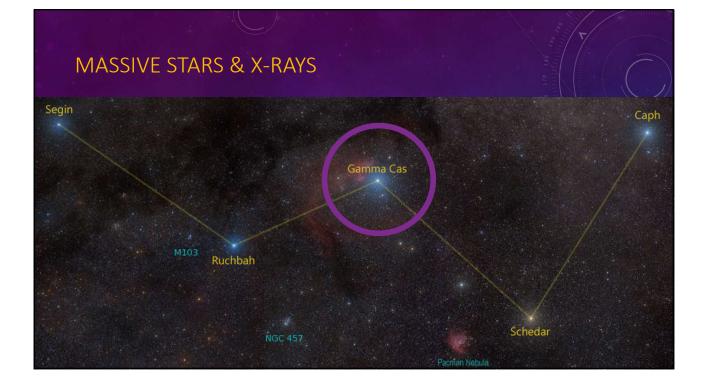

- Strong B-field channels winds
 ⇒ collision at equator
- Stationary plasma: narrow X-ray lines
- Additional X-rays : Lx somewhat ↑
- Face-on collision : kT somewhat ↑
- in several cases, modulation with rotational phase in magnetic oblique rotators (modulated flux – absorption only for NGC1624-2)



MASSIVE STARS & X-RAYS

Binaries:

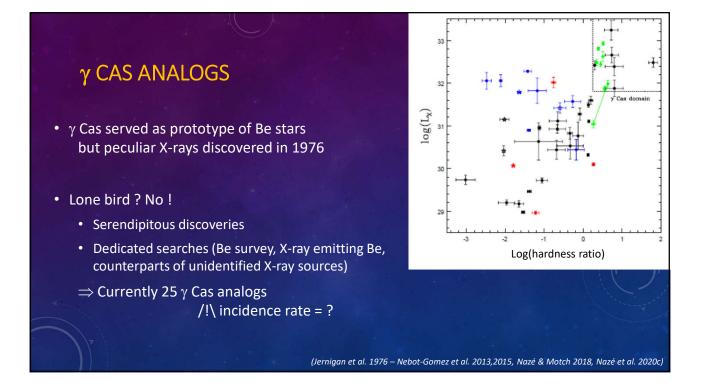
- Two massive stars = two supersonic winds ⇒ collision
- Shocked plasma seen from radio to γ-rays
 - X-rays : since first obs. of massive stars but NOT all binaries are X-ray bright
 - As in MCWS, kT and Lx somewhat ↑
 - Extended emission far from the stars
 - Phase-locked variations (intrinsic flux and/or absorption)

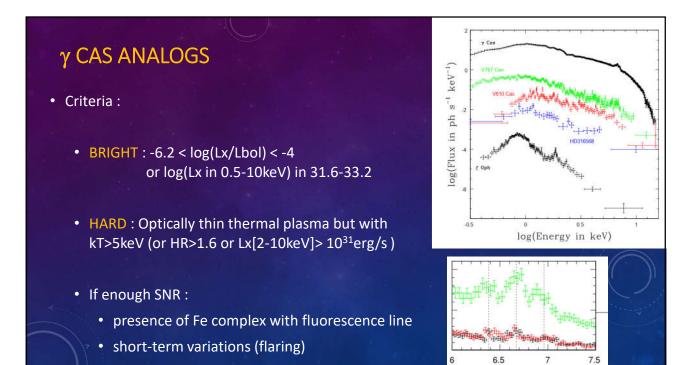


MASSIVE STARS & X-RAYS

What about B-stars?

- As O-stars for earliest ones
 - Embedded wind shocks, pulsations
 - MCWS (but usually less bright and less hot)
 - CIRs, CWBs : not detected
- Nothing if late-type (but PMS companion may emit)

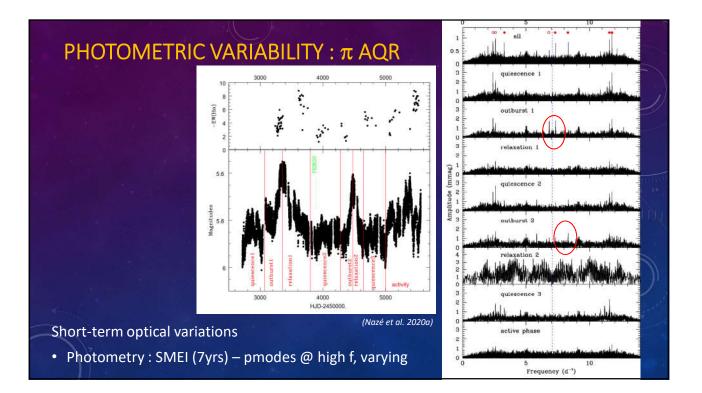

Except...

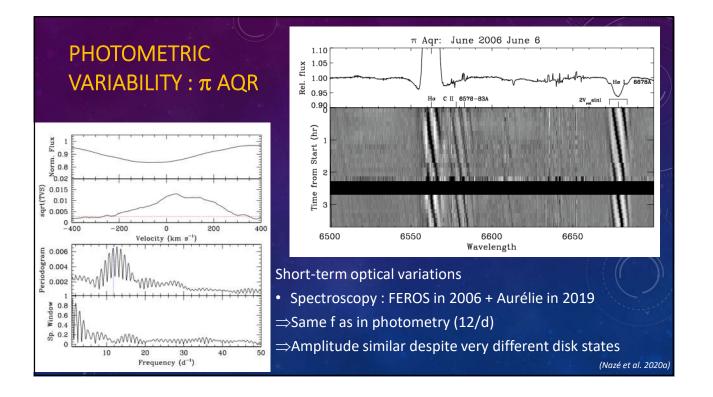


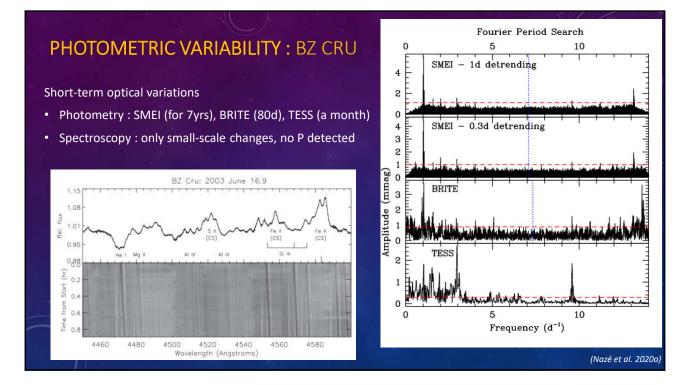
THE γ -CAS PHENOMENON

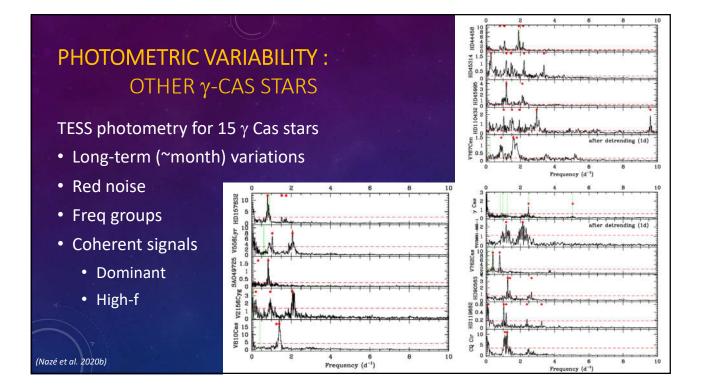
γ Cas (B0.5IVe)

- Be star : decretion disk ∃
- Bright X-rays : Lx and Lx/Lbol intermediate between OB-stars and HMXBs
- Hard X-rays : kT = 13 keV
- Variable X-rays : « flares » (short so high density!)
- Fluorescent Fe/Si lines
- fir triplets require high density and/or close UV source






THE γ -CAS PHENOMENON


 γ Cas are Be stars but not all Be stars are γ Cas : why ? Do they have something special ?

Where does the X-ray emission come from ? What is the link with the disk ?

PHOTOMETRIC VARIABILITY

Comparison with other stars

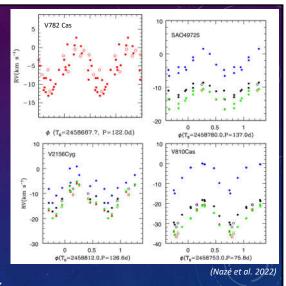
/!\ small # stat

- Long-term variations : not only low-f signals appearing at outbursts !
- Red noise : γ Cas * ~ OB *
- Freq groups : 1/3 in Be, $\frac{1}{4}$ in γ Cas *
- Coherent signals
 - Dominant : 20 to 30% in Be, 30% in γ Cas *
 - Strong high-f signals (>5/d) : rare (~ 10% of Be and γ Cas *)

(Nazé et al. 2020b)

ΤΗΕ γ-CAS PHENOMENON

Origin of X-rays?


- Companion
 - Accretion onto compact companion (WD, NS in propeller stage) (Murakami et al. 1986, Postnov et al. 2017
 - Collision between disk and wind of hot companion

• Be: star-disk interactions through small-scale mag fields

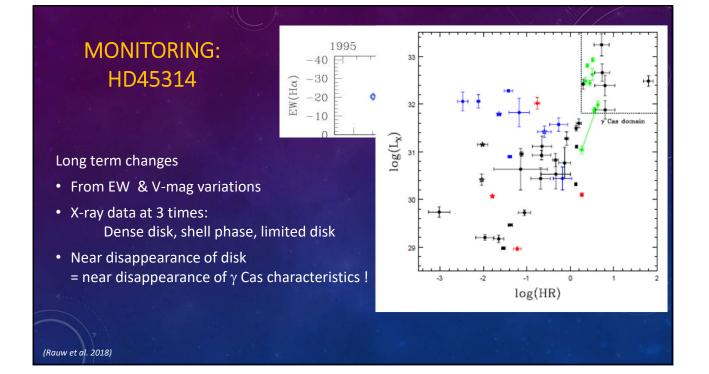
MULTIPLICITY OF γ-CAS STARS

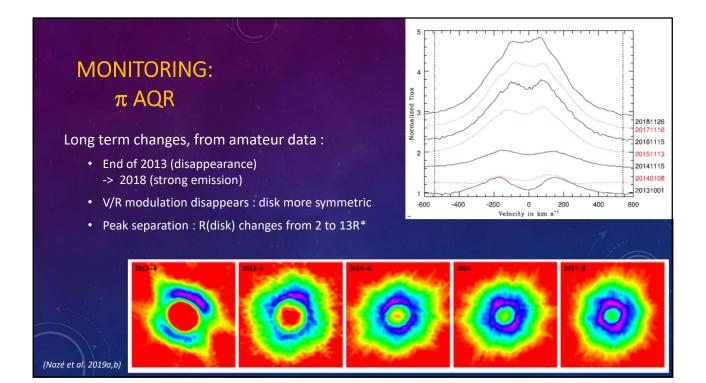
Are they binaries ?

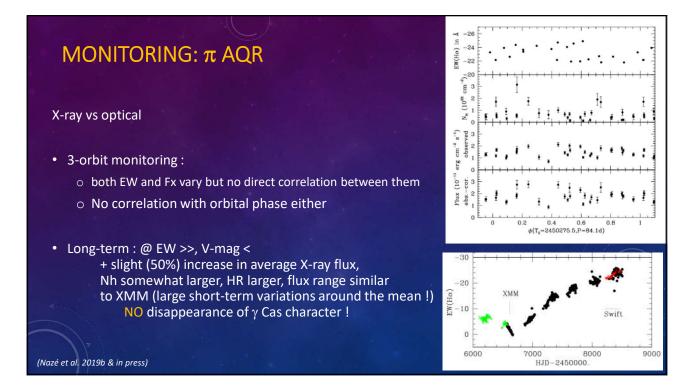
- γ Cas & π Aqr : known binaries (e.g. Bjorkman et al. 2002, Nemravova et al. 2012, Smith et al. 2012)
- Spectroscopic monitoring of 16 other γ Cas stars
 - Six with full orbital solutions : long P, low K
 (one quadruple system : V782 Cas !)
 - Five with RV shifts but no period yet

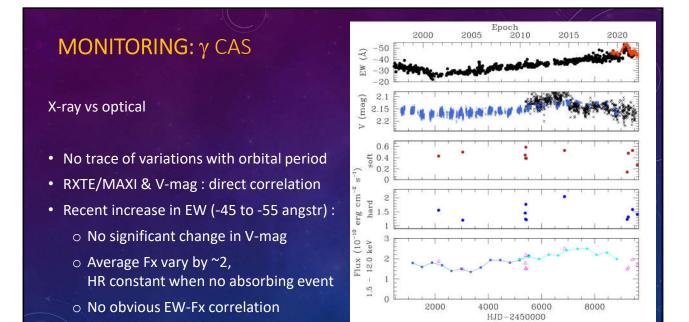
Langer et al. 2020

Smith et al. 1999)

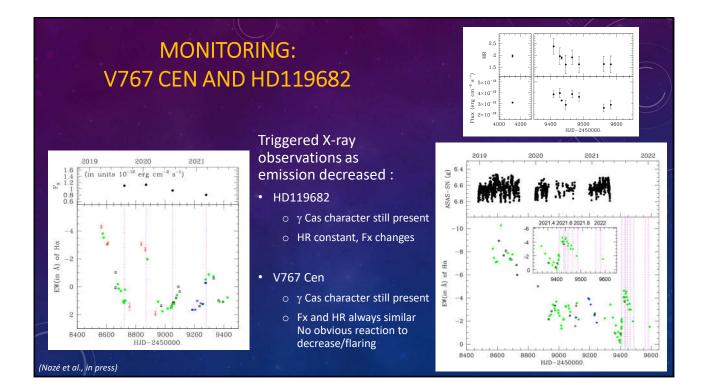

(Nazé et al. 2022)


MULTIPLICITY OF γ-CAS STARS


Name	P (d)	e	Be Sp.type	<i>M</i> (Be) (M _☉)	$M_{\rm comp}$ (M _{\odot})	í (°)	Reference
y Cas	203.6	0	B0IV	13	0.98*	45	Nemravová et al. (2012)
V782 Cas	122.0	0	B2.5III	9	0.6-0.7*	6090	this work
HD 45995	103.1	0	B2V	10	$1.0 \pm 0.1^{*}$	46.8	this work
V558 Lyr	83.3	0	B3V	8	0.7-0.8*	60-90	this work
SAO 49725	26.11	0	B0.5III	13	0.2-0.5*	30-90	this work
	137.0	0			0.4-0.7*	30-90	this work
V2156 Cyg	126.6	0	B1.5V	11	0.7-0.8*	60-90	this work
π Aqr	84.1	0	B1V	15	2.4 ± 0.5	70	Bjorkman et al. (2002)
V810 Cas	75.8	0	B1	12.5	0.7-0.8*	60-90	this work
Other Be stars							
φ Per	126.7	0	B1.5V	9.6	1.2 ± 0.2	77.6	Mourard et al. (2015)
ζ Tau	133.0	0	BIIV	11	0.9-1.0*	60-90	Ruždjak et al. (2009)
HR 2142	80.9	0	B1.5IV-V	10.5	0.7*	85	Peters et al. (2016)
LB-1	78.8	0	B3V	7 ± 2	$1.5 \pm 0.4^{*}$	39	Shenar et al. (2020)
HD 55606	93.8	0	B2.5-3V	6.0-6.6	0.83-0.9	75-85	Chojnowski et al. (2018)
FY CMa	37.3	0	B0.5IV	10-13	1.1-1.5	>66	Peters et al. (2008)
o Pup	28.9	0	B1IV	11-15	$0.7 - 1.0^{+}$		Koubský et al. (2012)
MX Pup	5.15	0.46	B1.5III	15	0.6-6.6	5-50	Carrier, Burki & Burnet (2002)
χ Oph	138.8	0.44	B2V	10	1.7-2*	60-90	Abt & Levy (1978)
HD 161306	99.9	0	B0	15	0.9^{+}		Koubský et al. (2014)
HR 6819	40.3	0.04	B2.5V	6	0.4-0.8*	35	Gies & Wang (2020)
59 Cyg	28.2	0.14	B1.5V	6.3-9.4	0.6-0.9	6080	Peters et al. (2013)
60 Cyg	146.6	0	B1V	11.8	1.5-3.4	>29	Koubský et al. (2000)


THE γ -CAS PHENOMENON

Origin of X-rays ? Role of the disk !? \Rightarrow monitoring needed !



(Rauw et al., in prep)

IN SUMMARY...

- Some Be stars display bright, hard, and flaring X-ray emission : the γ Cas stars
- Photometry : variable on several timescales, similarly to other Be stars.
- Multiplicity : orbit for 8 of 25 γ Cas stars, 5 more are candidate binaries long P, Mcomp << as in other Be binaries
- X-ray/optical monitorings :
 - \circ Long-term variations exist, but no clear link with EW(H α) or orbital period
 - $\circ~\gamma$ Cas character remain even when EW(Hlpha) $\downarrow\downarrow\downarrow$
- The future : « clean » X-ray statistics, iron line at high-res