# Evaluating the imprint of planet formation on the compositions of stars

Masanobu Kunitomo (Nagoya Univ.)

<u>Collaborators</u> Tristan Guillot (Observatoire de la Côte d'Azur), Taku Takeuchi and Shigeru Ida (Tokyo Tech.)

> Kunitomo et al. (2017a), A&A Kunitomo et al. (2017b), *in prep*.

> > June 20, 2017

Seminar at OCA



#### Molecular clouds



6----

#### Red giant phase



#### star/planet formation



#### Main sequence



#### Molecular clouds



GASEOUS PIIIARS • MITO PRC95-44a · ST ScI OPO · November 2, 1995 J. Hester and P. Scowen (AZ State Univ.), NASA

#### Red giant phase



#### star/planet formation



#### Kunitomo et al. (2017a), A&A Kunitomo et al. (2017b) *in prep*. Uence



### **Standard picture of star formation**

#### \* Underlying physics: Later

e.g., Larson69









#### Question of this seminar: Does accretion affect the thermal/chemical evolution of stars?





main

sequence





main



main

sequence





# Standard picture of pre-MS evolution

 Stars are formed with large radius/luminosity
 Shrink along the Hayashi and Henyey tracks

> Stellar mass and age are estimated with evolutionary tracks

Understanding of pre-MS evolution is important!

#### <u>Pre-MS evolutionary</u> <u>tracks in the H-R diagram</u>



### Luminosity spreads of pre-MS stars



Luminosities of pre-MS stars spread widely (~Idex) even in the same cluster

If the classical isochrones are assumed, the luminosity spreads correspond to age spreads (~IOMyr)

Baraffe+98 Muzerolle+05, Da Rio+10, Kenyon+Hartmann95, Gatti+06,08 Hillenbrand09 Palla+Stahler00, Inutsuka+15 Baraffe+09, Hosokawa+11 Hartmann01

Possible solutions:
✓ Age spreads are genuine
✓ Classical isochrones are inaccurate
✓ Observational errors

# **Entropy of accreting materials**



#### <u>Aim of this study:</u> We revisit pre-MS evolution considering low-entropy accretion and discuss its impact on the observational problem

## **Method: Basic equations**



Stellar evolution code MESA Paxton+11,13,15

# Method: Heat injection by accretion

Energy Eq. 
$$\frac{\partial l}{\partial M_r} = \varepsilon_{nuc} - T \frac{\partial s}{\partial t} + \varepsilon_{add}$$

$$\underbrace{entropy \ injection}_{by \ accretion}$$
(s: entropy)
$$\underbrace{\text{(s: entropy)}}_{\text{Sacc}}$$

1

$$\mathcal{E}_{add} = \zeta L_{acc}/M \star L_{acc} = GM \star \dot{M}/R \star$$

We assume that a fraction of the gravitational energy of accreting materials is injected

In total, injected energy  $L_{add} = \xi L_{acc}$ 

#### **Method: Fiducial settings**





**Results:** 

Pre-MS evolutions with various accretion heating,  $\boldsymbol{\xi}$ 

## **PMS evolution with low-entropy accretion**



Standard evolution of  $IM_{\odot}$  stars: Stars are formed with a large radius and luminosity

# **PMS evolution with low-entropy accretion**



Pre-MS evolution with low-entropy accretion
is totally different from the standard one
Radius: ~10 times smaller
Luminosity: ~100 times smaller

**Baraffe+09,10,12**, Hosokawa+11

# Dependence on heat injection efficiency $\xi$

Kunitomo et al. (2017a), A&A

Pre-MS evolution is controlled by heat injection and deuterium fusion



Deuterium fusion is a strong exothermic reaction

 $D + {}^{1}H \rightarrow {}^{3}He + 5.5 \,MeV$ 

→ entropy generation

 $\rightarrow$  stars expand

Radius can be different by up to a factor of 10 ( $\xi$ )

Kunitomo et al. (2017a), A&A



The luminosity spreads can be explained with large age spreads

Kunitomo et al. (2017a), A&A

**Fixed**  $\xi$  value  $L_{add} = \xi GM\dot{M}/R$ *ξ*=0.1 0.5 0 -0.5 log L\* [L $_{\odot}$ -1.5 -2 0.3Myr -2.5 1Mv ЗMv -3 5000 4500 4000 3500 3000 2500 2000 Effective temperature [K]

the most luminous stars cannot be explained anymore

Kunitomo et al. (2017a), A&A

**Fixed**  $\xi$  value  $L_{add} = \xi GM\dot{M}/R$ ξ=0.05 0.5  $\mathbf{O}$ -0.5 log L\* [L<sub>.</sub>] -1.5 -2 0.3Myr -2.5 1Mv 3Mv -3 OMV 4500 4000 3500 3000 2000 5000 2500 Effective temperature [K]

> the slope of the isochrones becomes inconsistent with the ensemble of observational data points

Kunitomo et al. (2017a), A&A



the slope of the isochrones becomes inconsistent with the ensemble of observational data points

#### • Variable $\xi$ value with fixed age

Kunitomo et al. (2017a), A&A



Different  $\xi$  values can create luminosity spreads without invoking age spreads

Baraffe+09, 12

#### We suggest most (~90%) stars have been formed with $\xi \ge 0.1$ because the number of underluminous stars is small

#### Part 2:

# Consequences of low-entropy accretion on stellar surface composition



# **Composition of protoplanetary disks**



- Planets are formed in protoplanetary disks
- Composition of disks:
  - mainly  $H_2$  and He gas
  - refractory elements (~0.4%)
    - (e.g., Fe, Mg, Si, etc.) Asplund+09

- Planet formation can change the disk composition
- Disk gas accretes onto the host star



#### Does planet formation pollute stellar surface composition?

(=change from a primordial one)

#### **Possible observational signatures of pollution**

#### Solar composition anomaly



- the Sun has the refractorypoor composition compared to most solar twins
  - ~15% solar-twins also have the solar-like composition
- difference: ~10%

e.g., Melendez+09, Ramirez+09

Possible scenarios: ✓ Pollution? ✓ Migration of the solar system in the Galaxy? Chambers10; Adibekyan+14

#### **Possible observational signatures of pollution**

Binary systems (16 Cyg, XO-2)

Ramirez+11; Damasso+15

The surface composition of *planet harboring stars* is metal-poor compared to the other star

Metallicity gradient of Hyades cluster

In Hyades cluster, higher-mass stars have lower metallicity → stronger impact of planet formation on higher-mass stars?



#### (Pre-Main Sequence) Internal structure of pre-MS stars







Fully convective stars accreted gas is diluted in the entire star → pollution is limited

Stars with a large radiative core accreted gas is distributed only in the thin convective zone (CZ) → strong pollution!

The thickness of surface convective zone is important

## Previous study on solar anomaly: Chambers (2010)



Accretion of 4M⊕ rocks makes the solar composition as refractory-rich as solar twins **using internal structure of** <u>the present-day Sun</u>



# (Pre-Main Sequence) Internal structure of pre-MS stars

surface convective zone should be small before disk dispersal



The thickness of surface convective zone is important

#### **Determination of the magnitude of pollution**

- The magnitude of pollution depends on stellar evolution and planet formation
  - Planet formation model:
    - Total solid mass in planets, M<sub>solid</sub>
    - Ice-to-rock ratio, fice/rock
  - Accretion history:  $\dot{M} \propto t^{-1.5}$  & disk lifetime~10Myr

Hartmann+98 Haisch+01

• Evolution of convective zone mass, M<sub>CZ</sub>



# Solids in planets in the solar system

#### • Total solid mass in planets, M<sub>solid</sub>

- $\bullet$  Terrestrial planets:  $2M_\oplus$
- Jupiter+Saturn: 30-70M⊕ e.g., Guillot05, Miguel+16, Wahl+17, Helled+Guillot13
- Uranus+Neptune: ~25–28M<sub>⊕</sub> e.g., Nettlemann+13
- +Missing objects: ~60–100M<sub>⊕</sub> e.g., O'Brien+07, Tsiganis+05, Izidoro (private comm.)

#### $\rightarrow$ ~150M $_{\oplus}$ solids

 $\rightarrow$  0.03M<sub>o</sub> metal-free accretion (150M<sub>o</sub>/Z<sub>o</sub>, Z<sub>o</sub>=0.0134)

Asplund+09

#### Ice-to-rock ratio, fice/rock

- Solar photosphere = 2.0 *Lodders03* 
  - Lower  $f_{ice/rock}$  than 2.0 in planets induces refractory-poor accretion
- Highly uncertain in giant planets

## **Accretion history**



 $Z_{\rm surf} = \frac{M_{\rm CZ} \, Z_{\rm surf} + M_{\rm acc} \, Z_{\rm acc}}{M_{\rm CZ} + M_{\rm acc}}$ 

#### Internal structure with low-entropy acc.



Pollution of stellar surface is expected to be stronger in the low-entropy accretion cases, if planets are formed

### Internal structure with low-entropy acc.

a



#### **Underlying physics**

- low-entropy accretion
- → smaller radius
- $\rightarrow$  higher temperature (From Virial theorem,  $T \propto M/R$ )
- → smaller opacity
- → radiative core develops

(cf. in Schwarzschild criterion, convective if  $\nabla_{ad} < \nabla_{rad} \propto \kappa l$ )

## **Metallicity gradient in Hyades cluster**



Red lines:

Consequences of planet formation

- Metal-free accretion for 0.03M<sub>fin</sub>
- higher-mass stars have shallower convective zone → larger impact

The trend made by planet formation does not match the observation with any  $\xi$  value  $\rightarrow$  planet formation process is not the origin

### **Solar composition anomaly**



With lower *f*<sub>ice/rock</sub> than 2 (=solar photosphere value), more refractory elements are deposited in planets → refractory-poor accretion

## **Solar composition anomaly**



- With  $\xi=0.1$  and  $M_{solid}=150M_{\oplus}$ , any ice-to-rock ratio value cannot reproduce the observed refractory-poor composition
- With  $\xi=0$  and  $f_{ice/rock}=0.7$ , planet formation can be the origin of the composition anomaly
  - With  $M_{solid} = 100$  and  $200M_{\oplus}$ ,  $f_{ice/rock} = 0.5 0.85$

## Summary

We revisited pre-MS evolutions with low-entropy accretion and found

- (1) Stars formed by the low-entropy accretion have a much smaller radius and luminosity and develop a radiative core more rapidly
- (2) Luminosity spreads of pre-MS stars can be explained by different heat injection  $\boldsymbol{\xi}$
- (3) Most (~90%) stars may be formed with  $\xi$  >0.1
- (4) Planet formation cannot explain the metallicity gradient in Hyades cluster, but can explain the solar composition anomaly if  $\zeta = 0$  and  $f_{ice/rock} \sim 0.5-0.85$  are possible
- (5) Multidimensional RHD simulations are needed to reveal the heat injection efficiency  $\xi$

